GC30-2025-0

Systems

Systems

GC30-2025-0

OS TCAM User’s Guide

Program No. 360S—-CQ-548

Release No.20.1

First Edition (January 1972)

This edition applies to Release 20.1 and to all subsequent releases of OS TCAM until otherwise
indicated in new editions or Technical Newsletters. Changes are periodically made to the
information herein; before using this publication with IBM systems or equipment, refer to the
latest SRL Newsletter for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

This manual has been prepared by the IBM Systems Development Division, Publications
Center, Department EO1, P. O. Box 12275, Research Triangle Park, North Carolina 27709. A
form is provided at the back of this publication for reader’s comments. If the form has been
removed, comments may be sent to the above address. Comments become the property of IBM.

+ © Copyright International Business Machines Corporation 1972

Preface

The TCAM User’s Guide is for systems analysts and programmers who must
design, write, and install a TCAM program. It is both a guide for diagnosis and a

problem determination handbook. The INTRODUCTION to the TCAM User’s

Guide names and briefly describes the four chapters and their appendixes.

An acronym list and a list of illustrations which is organized by chapter and by

appendixes follow the table of contents.

. Before you read this book, you should be familiar with the OS TCAM

Programmer’s Guide and Reference Manual, GC30-2024, and the OS TCAM
Concepts and Facilities, GC30-2022. You will also find the TCAM PLM,

GY30-2029, helpful.

Use this publication in conjunction with the publications shown in the following
chart. Abbreviated titles refer to other publications throughout this publication.

The chart below shows both the abbreviated and the full titles.

Abbreviated Title
Principles of Operation

Utilities
System Control Blocks
Guide to Reading Dumps

OS Service Aids

TCAM Concepts and Facilities

TCAM Programmer’s Guide

1/0 Supervisor PLM

TCAM PLM

Full Title

IBM System/360
Operating System:
Principles of Operation

OS Utilities

OS System
Control Blocks

Guide to Reading
OS System Dumps

IBM System/360
Operating System:
Service Aids

IBM System/360
Operating System:
Telecommunications Access
Method (TCAM) Concepts
and Facilities

IBM System/360
Operating System:
TCAM Programmer’s
Guide and Reference
Manual '

IBM System/360
Operating System:
Supervisor Logic
Telecommunications

Access Method (TCAM)
Program Logic Manual

Order No.
GA22-6821

GC28-6586
GC28-6628

GC28-6670

GC28-6719

GC30-2022

GC30-2024

GY28-6616

GY30-2029

iii

Contents

Introduction e e e |
OVEIVIEW L L o i e 3
What Is TCAMY? . . . e 3
How Do You Invoke the Facilitiesof TCAM? i v i i v . 3
Network Definition L o e e e e e 3
Starting TCAM L L it e 4
Activating and Deactivating TCAM i e 6
Message Flow L e e e e e e e e e 8
Buffering Scheme L e e e e e 9
Queuing Scheme e e e e e e e e e e e e e e e e e e e 10
Message Handlers L . e e e e e e e e e e 11
StruCture o e 11
Application Program Support e e e e e e e e e e e 12
Interface Definition L L e e e e e e 12
Service Facilities e e e e e e e e e e e 13
OperatorControl L e e e e e e e 13
Checkpoint/Restart o i i i e e e e e e e e e e e e e e e e e e 13
LOggINg i e 13
Diagnostic Aids (COMWRITE) o i e e e e et e e e e e 14
I/OError Recording o . o v v i i e e e e e e e e e e e e e e 14
On-Line Test (TOTE) i i it i et e i e e e e el e e 14
Other Internal Design Highlights ‘15"
TCAMC Coding Aids e e e e e e e e 17
Function Checklists o L e e e e e e 17
MCP Arrangement Checklist e 17
Buffer Definition Checklist e 17
TCAM Unit Pool Analysis e e e e e e e e 20
Message Queues Checklist L e e 23
Checkpoint/Restart Checklist e 23
Operator Control Checklist o o e 23
Diagnostic Aids Checklist e e e 23
Application Program Checklist e e 23
Coding Hints to Alleviate Errors v i i v i et e e e e e e e e e 23
The Message ErrorRecord 0 i e e 23
Using the Message Error Record to Detect
Message Errors L e e e e e e e e e e e e e 29
SEQUENCEMACrO. o v i it i e 30
ORIGINMACTO o et e 31
FORWARD Macro o it e e e e e e e e e e e e e e e e e 32
TERRSET Macro v i it e i e 32
Using the Message Error Record to Detect
Hardware ETrors oo i e e e e 33
STARTMHMacro e e e e e e e e e e e e e e e e e e 33
CUTOFFMacro v v it e et e it e e e e e e e e e e e e e e e e 34
Macros Dependent on the Message ErrorRecord 34
HOLD Macro o e e e e e e e e e e e 34
CANCELMG MacCro v it e it e 35
REDIRECT MACIo . . . v v o v it e et e e e e e e e e e e e e e e e e e 35
ERRORMSG Macro o i it e e e e e e e e e e e e e e e e e 35
MSGGENMACIO v vt it e e e e e e e e e e e e e e e e e e e 36
ERRORMSG and MSGGEN ittt et i it ee e 36
LOoggIng o i e 38
TCAM Problem DeterminationAids 39
Application Program Considerations 0 0 ... 39
Examining and Coding an Application Program 39
Message Handling for an Application Program 41
Typical Errors o o e e e e e e e e e e e e e e 43
Message Control Program Considerations i vt vt v i e 44
Defining TCAM Terminal and Line Control Areas 44

General Hardware Considerations o 0 0 0 v 0 i v it o e e e e e e e 44

TERMINAL Macro Instruction Considerations oo vt oo .. 44
Option Field Considerations oo 00t i i 45
Other Consideralions o o0 0 i it e e e e e e e e e e 45
Typical EFrOors o o e e e e e e e e e e e e e e e e e e e 45
Defining TCAM Buffers 0 e e e e e e e e e 46
Typical EFTOrS . . o o v v ot e e e e e e e e e e e e e e e e e 49
Defining TCAM Data Sels . . . o o o o v e s e e e e e e e e e e e e e e e e e e 49
LIne Group . . . o o o e e e e e e e e e e e e e e e e e e 49
Message QUELES .« v v v v v o e e e e e e e e e e e e e e 50
Checkpointand Log o . . L o e e 51
Typical Errors e e 51
Activating and Deactivating TCAM 0 ittt e e 52
INTROMACrO. . . . o o i e e e e e e e e e e e e e e e e e e e L.52
OPENMacro0 i e e e e e e e e e 52
READY Macro o i et e e e e e e e e e e e e e e 53
CLOSEMAacro it e e e e e e e e e e e e e e 53
Typical EITOrS o o o i e 53
QUEUING e e e e e e e e e e e e 54
Main-Storage QUCUECS L L e e e e e e e e e e e e e e e e 54
Nonreusable Disk Queues Lo e e 54
Reusable Disk Queues e e e e 55
Queuingby Line. L L e e 55
Queuing by Terminal e e e e e S5
Other Constderations 0t v i it e e e e e e e e e e e e 55
Typical ETTors o o o o e e e e e e e e e e e e e e e 56
Defining the Message Handlers e 56
Delimiter Macros o 0 i e e e e e e e e e e e 56
Message Format o . L L e e e e e e e e e e e e e 56
ScanPointer Lo e e e e e e 57
UserCode L . o o e e e e e e e 60
Typical EFrors o o 0 o o e e e e e e e e e e e e e 62
Functional Macros L e e e e 62
Typical EFrors o o o o e e e e e e e e e e e e e 69
Operating and Procedural Considerations oo e 70
Typical Errors o . o e e e e e e e e e e e e e e e 72
Terminal User Errors 0 o o e e e e e e 72
Typical EFTOrs o o o o e e e e e e e e e e e e e 73
Other Possible Areasof Error e 74
TCAM Diagnostic Aids e e e e 75
Gathering and Interpreting DatafromDumpso oL 0oL 75
Main-Storage Dumps o e e e e e e e e 75
TCAM Formatted Dump s e e e e e e e e e 75
Readingthe Dump. e e e e 76

Table Pointers L e e e 76
Dispatcher Ready Queues e e e e e e e e e e e e 77

TCB Pointers o e e e e e e e e 78

ECBs o e e e e e e e e 78

Special Elements L o e e e e e e 78
QCBPoINters. . . . v o it e e e e e e e e e e e e 78
Interface N 78

Core Queue L e e e e e e e e 79

Disk . . . e e e e 79
Termname Table 79
Terminal Table e e 80

TCAM Destination QCBs i e e 80
TCAMDCBS o e e e e e e e e e e e e e e 80
Usingthe Dump o e e e e e e 81
Stand-Alone Dump L e e e e e e 84
Finding the AVT e e e 85
Finding the Current Buffer 85
Finding the Line 1/O Interrupt Trace Table 85
Finding the Subtask Trace Table 86
Finding the Cross-Reference Table 86
Finding the QCB fora Terminal 86

vi

Findingthe DCB e et e e e 86

Findingthe LCB o e e 86
Fromthe DCB, e e e e e e e e 87

Fromthe Buffer e e 87

Fromthe Terminal Entry oo, 87

Findingthe SCB . . . v o v v e i e e et e e e 90

Finding the Message ErrorRecord L o o oL, 90
Secondary-Storage Dumps L L oL e e e e e e e e e 90
Disk Message Queues Dumpo 90
Message Queues DataSet.l e e 93
Checkpoint/Restart DUmp 0 i v it e e e e e e e e e 98
LogDataSetDump e e e e e e e e e e 98
Dumping the Log Segment DataSet, 99

Using the Log SegmentDump0 o 99
Dumping the Log Message DataSet 100

Using the LogMessage Dump o o 101
OBR/SDR File Dump o it e e e e e e e e e e e 101
OBR/SDR Table e e 102

I/0 Device (Outboard) Records v v i i it it et e e 103
Summary of Outboard Records 107
End-of-Day Recording e e 107

TCAM Libraries Dump 0 o o e 109
Service Aids L L L e e e e e e e e e e e e e 110
Dumping TCAM Trace Tables 110
Printing Trace Table Dumps 110

Line I/O Interrupt Trace Table 111
Activatingthe Trace o Lo e e e e e 111

Using the Line I/O Interrupt Trace i v i i i i e e e 113

The Table in Main Storage . . .« 0 . 0 v i i i e e e e e e e e 113
Teleprocessing Operation (TPOP)Code 1135

The Formatted Table i i 117

Subtask Trace Table e 18
Activatingthe Trace i 0 i it e e e e e e e e e e e e 118

Using the Subtask Trace o e 119

The Table in Main Storage i i i it e 120
Contentsof an Entry L .. e e e 121

The Formatted Table 127
Usingthe Table i e i e e e e e e e e e e 127

Buffer Trace o o o o e e e e e e 132
Activatingthe Trace 0 i i i it i e e e e e e e e e e 132

Using the Buffer Trace i i it it i et et e 132
FormatofanEntry e e e 133

The Formatted Table e 133
Cross-Reference Table L o 138
Console and Terminal Listings i i i ittt in e 140
Using Operator Commands v v v v i i v it e e e e e e e e e 140
Normal End-of-Day Closedown 0 i i it e e et e e e e e 144
Appendix A. TCAM Control Block Relationships 147
Appendix B. TCAM Macro Operand Summary 151
Appendix C. TCAM Formatted ABENDDump 179
Appendix D. Device Configurations Supportedby TCAM209
Glossary L e e e e e e e e e e e 213
Index L e e e e e e e 221

Figures

Chapter 1. Overview

1. Overall Structure of a Message
Control Program e e e e e e e e e e e e e e e 4
2. Overviewof aTCAMProgram o 0 it i ittt e 5
3. MCPMacroInstructions o ot v vttt vt e e e e e e e 6
4. JCL.TCAM Network, and Control Block
Relationship 0 0 i i i e e e e e e e e e e e e e 7
5. JCL. TCAM Network, and Macros
Relationship 0 o 0 i e e e e e e e e e e 7
6. TCAMMessage Flow o 0 i e 9
7. Interface Between the Application
Programandthe MCP o . e 13
8. Application Program Macro Instructions L Lo 0. 14
Chapter 2. TCAM Coding Aids
9. MCP Arrangement Checklist e 18
10. Buffer Definition Checklist o e 19
11. Message Queues Checklist e e 24
12. Checkpoint/Restart Checklist i et 25
13, Operator Control Checklist i ettt 26
14, Diagnostic Aids Checklist e 27
15. Application Program Checklist i e e 28
16. TCAM Message Error Record Summary o0 oL 29
17. An Invalid Message with No
Dead-Letter Queue L e e e e e e e e e e e e e e 33
18. An ERRORMSG Macro ExitRoutine 37
Chapter 3. TCAM Problem Determination Aids
19. Multiple-Buffer Header Processing
AcrossBuffers. e e e e e e e e e e e 6l
20. MHReturn Codes (2 parts) e e e e e e e 63
21. MH Functional Macros by Subgroupo oo 71
Chapter 4. TCAM Diagnostic Aids
22. A Formatted ABEND Dump Printout
(T4 Parts) o o e e e e e e e e e 77
23. Findinga DD entry fromthe DCB(2Parts) 82
24, Start of a Printout from a Low-Speed ’
Stand-Alone Dump L e e e e e e e e e e e e e 84
25. Finding the AVT inaStand-AloneDump 86
26. Finding the LCB in a Stand-Alone Dump (6 Parts) 88
27. Finding the Number of Queuesin a
TCAM System o o it e e e e e e e e e e e e e 91
28. Messages Queues Data Set Printout o 0oL, 96
29. A Sequential-by-Record Dump e e e e 97
30. A Sequential-by-QueueDumpo e e 98
31, LogSegment OQutput o i i e e e e e e e e e e e e e e 100
32, LogMessage Output . . o . o v i e e e e e e e e 101
33. AnUnrecoverable /O ErrorRecord L oo 104
34, Anlntensified I/ORecord e 105
35. A Summary Outboard Record 108
36. A Summary Outboard Record for an
Unrecoverable I/OError o i e e e e e 108
37. A Summary Outboard Record for an
Intensified /O Error 0 0 e e e 109
38. AnEndofDayRecord e e e e .. 109
39. Linel/O Interrupt Trace Table Format 113
40. TCAMTPOPCodes v i it e e e e e e e e e 116

vii

viii

41.

42.

43.

44,

45.

46.
47.
8.

49.

50.
51.

52.
53.

54.

Line [/O Interrupt Trace Table in
Main Storage (2 Parts)
Formatted Line 1/O Interrupt Trace Table

Subtask Trace Table Format i
Formatted Subtask Trace Table Prefix . . .
Second Half of the Subtask Trace Table . .
TCAM Relative Priorities (3 Parts)

Reading a Subtask Trace Entry (3 Parts) . .

Formatted Subtask Trace Table

A Receive, a Negative Response to Polling.
and a Send Operation (3 Parts)

A BufferPrefix
Formatted Buffer Trace
Cross-Reference Table Format
A Cross-Reference Table

Summary of Operator Commands (2 Parts)

Appendix A. TCAM Control Block Relationships

55.
56.

57.

TCAM Control Block Linkages
TCAM Control Block Linkages between an
Application Program and the Message

Control Program
Linkages of TCAM Diagnostic Aids

Appendix B. TCAM Macro Operand Summary

58.

59.

60.

61.
62.

63.

TCAM Macros Defining Terminal and
Line Control (3 Parts)
TCAM Macros Defining MCP Data Sets
(BParts) e
TCAM Macros for Activation and
Deactivation (3 Parts)
TCAM Message Handler Macros (10 Parts)
TCAM Application Program Macros
(TParts)
Other TCAM Macros

Acronym List

ABEND
ACSMETH
ACK
APAR
AVT
BSAM

BSC

CcC

CCW

CD
COMWRITE
CPB

CPU

- CRC

CSW
CVT
DASD
DCB
DCT
DD
DEB
DLE
DSCB
ECB
ENQ
EOA
EOB
EOD
EOM
EOT
ERB
ETB
ETX
EXCP
FE
ID
1/0
10B
108
JCcL
LCB
LMWA
MCP
MH
MS
OBR
oS
PCB
PCI
PEWA
PSW

Abnormal End
Access Method Work Area
Positive Acknowledgment Character

Authorized Program Analysis Report

Address Vector Table
Basic Sequential Access Method

Binary Synchronous Communications

Chain Command

Channel Command Word
Chain Data

Common Write Routine
Channel Program Block
Central Processing Unit
Cyclic Redundancy Check
Channel Status Word
Communications Vector Table
Direct Access Storage Device
Data Control Block

Device Characteristics Table
Data Definition

Data Extent Block

Data Link Escape Character
Data Set Control Block
Event Control Block

Enquiry Character

End of Address Character
End of Block Character

End of Day

End of Message Character
End of Transmission Character
Element Request Block

End Transmission Block Character
End of Text Character
Execute Channel Program
Field Engincering
Identification

Input/Output

Input/Output Block
Input/Output Supervisor

Job Control Language

Line Control Block

Locate Mode Work Area
Message Control Program
Message Handler

Main Storage

Outboard Recorder
Operating System

Process Control Block
Program Controlled Interruption
Process Entry Work Area
Program Status Word

PTF Program Trouble Fix

QCB Queue Control Block

QSAM Queued Sequential Access Method
RCB Resource Contro! Block

SCB Station Control Block

SCT Special Characters Table

SDR Statistical Data Recorder

S10 Start Input/QOutput Operation

SLI Suppress Length Indication

STCB Subtask Control Block

STX Start of Text Character

TCAM Telecommunications Access Method
TCB Task Control Block

TCU Transmission Control Unit

TIC Transfer In Channel

TIOT Task Input/Output Table

TOTE Telecommunications on Line Test Executive
TP Teleprocessing

TSO Time Sharing Option

TWX Teletypewriter exchange

UCB Unit Control Block

VCON V Type Address Constant

Introduction

You can use the OS TCAM User’s Guide in three ways:

1. As a source of hints for originally coding your TCAM message control program
and application programs.

2. For diagnosing a TCAM problem when you first try to run TCAM.

3. For problem determination during the initial stages of trouble shooting in a
system that uses equipment provided by more than one vendor.

Chapter 1, OVERVIEW, is an enhancement of TCAM Concepts and Facilities.
After you have become familiar with the TCAM Concepts and Facilities and
TCAM Programmer’s Guide manuals, Chapter 1 will provide a transition to the
remaining chapters of this guide.

Chapter 2, TCAM CODING AIDS, discusses pre-assembly aids to help you code
your TCAM program so that it will be as error-free as possible. The first section
shows the functions of a TCAM program in proper coding order. The second
section describes macros that you can include in your program to detect and
handle errors in messages and in the teleprocessing network.

Chapter 3, TCAM PROBLEM DETERMINATION AIDS, suggests where you
can look in your code when you have an error. Each possible problem area is
discussed. Lists of the more common errors that can be made are given. Use this
chapter to review your code before you first run a TCAM program. Use it also,
when you have a problem, to review possible problem areas. In addition to errors
in your code, Chapter 3 also summarizes other sources of errors, such as hard-
ware, software, and those that might be caused by system console operators and
terminal users.

Chapter 4, TCAM DIAGNOSTIC AIDS, tells you what information TCAM
provides for your use in diagnosing problems, and how you can get copies of the
information. The first section, Gathering and Interpreting Data From Dumps,
covers the TCAM program and all the data sets that you can dump and print.

This first section also suggests the kinds of errors that you can find, where to look
for them, and, in some cases, what normal operations look like. The second
section, Using Operator Commands, summarizes operator commands that you can
issue to determine and alter the status of your TCAM system while it is running.
The last section, Normal End-of-Day Closedown, suggests what data you might
want to copy during your normal end-of-day closedown.

APPENDIX A includes charts showing TCAM control block linkages.
APPENDIX B is a summary of TCAM macros and their operands.

APPENDIX C is a field-by-field description of the output from a formatted
TCAM dump.

APPENDIX D includes charts showing device configurations supported by
TCAM.

Following is a general overview of TCAM. Read this before coding, to familiarize
yourself with the facilities provided by TCAM.

" Introduction 1

Overview

What is TCAM?

How do you invoke the
facilities of TCAM?

Network Definition

TCAM is:

« A general purpose TP access method that provides facilities to exchange data
between a CPU and remote terminals.

o A control program that optimizes allocating and scheduling a computer’s
resources in a real-time teleprocessing environment.

Resources optimized:

1. CPU time
2. Main storage
3. I/0 paths (lines and channels)

e A high-level language composed of macro instructions designed specifically to
facilitate building a TP network control program.

Code a message control program (MCP) containing sections in which you:

« define the TP hardware—terminals and lines—to TCAM;

« define data sets in which TCAM queues incoming messages until they are sent
to their destinations; .

« construct message handlers to 1)translate, edit, and verify the validity of the
input data; 2)route incoming and outgoing messages to their destinations; 3)
invoke certain system functions such as logging;

« define an interface to application programs for message processing;

« specify which of TCAM’s service facilities, operator control,
checkpoint/restart, logging, debugging aids, on-line test you want to be
included; and

« include routines to activate and deactivate the TP network.

At system generation time, be sure your UCBs are correct. Know your network
configuration and what you have (features).

Macro instructions involved:

o Line Group DCB macro: defines a group of lines with similar characteristics
(for instance, you might define a group of lines for IBM 1050 terminals by a
line group DCB macro). This macro specifies information applicable to termi-
nals as a group, such as the translation table to be used to translate incoming
and outgoing messages for the terminals, the buffer size for buffers servicing
lines in the group, and the message handler to handle messages to and from
terminals assigned to lines in this group. You do not have to define your similar
terminals in a line group. Each terminal may be defined with a unique DCB.
The decision to place your terminals in a line group rather than having individu-
al DCBs is based on the planned usage of the terminals (are they output only?)
and on main-storage conservation.

"« TERMINAL macro: defines an individual remote terminal to TCAM. Gives

the terminal a name, specifies the type of queuing to use for messages sent to

Overview 3

!

TERMINALS

MESSAGE CONTROL

1]
;

PROGRAM
APPLICATION
ACTIVATION & TERMINATION PROGRAMS
ROUTINES
=~ LT
13
APPLICATION
HARDWARE MESSAGE PRO GRAM
< > < > e >
CONTROL HANDLERS ONTROL
| BLOCK BLOCK
"1 INTERFACE INTERFACE

LOG, QUEUE, AND CHECKPOINT
CONTROL BLOCK
INTERFACE

N

Starting TCAM

4

0OS TCAM User’s Guide

EXTERNAL STORAGE

Figure 1. Overall Structure of the Message Control Program

°

this terminal, the addressing characters to use in addressing this terminal, this
terminal’s telephone number if it is on a dial line, etc.

INVLIST macro: specifies the characters to invite (poll) each terminal on this
line to enter data (one macro per line).

Tying it together:

The TERMINAL macro names the line group DCB macro for the line to which
‘this terminal is assigned. The line group DCB macro names the INVLIST macros
containing the invitation characters for each terminal on a line in the line group.

The line group DCB macro also names a DD statement that specifies the hardware
address of each line.

Code one line group DCB macro for each group of lines to terminals with
similar characteristics. '

Code one TERMINAL macro for each terminal in the network.

Code one INVLIST macro for each line on which there are terminals that can
enter data.

The TCAM MCP is just another problem program to OS.
Assembling, link-editing, and executing steps for a TCAM MCP are similar to
those for any other problem program running under OS.

MESSAGE CONTROL PROGRAM APPLICATION PROGRAM
Destination QCB Qutgoing to Read=-Ahead
Line (Main Storage Application QCB
or Disk) Program
MH
MH
Buffi »{ INHDR QUTHDR
e] Butfer] S
INBUF QUTBUF
Buff
NSO OUTMSG
2
Destination QCB Incoming from
* (Main Storage Application
H (4 to MCP
Line MH or Disk) rogram to
\S\ MH
< D
{ oo OUTHDR Buffer | INHDR [[ootter_Je—(pu)
OUTBUF INBUF
OUTMSG INMSG
LINE CONTROL BUFFERING MH QUEUING MH BUFFERING

Figure 2. Overview of a TCAM Program

3.

A TCAM MCP normally executes as the highest-priority task in the highest-
priority region or partition in the system (for performance reasons).

You can issue any OS macro within the MCP but you must be aware of the
system implications. That is, you significantly degrade MCP performance if
you issue an OS WAIT as a result of an OS macro execution.

You can start a TCAM MCP in three ways:

. Place the appropriate execution JCL in the card reader and use the OS
Reader/Interpreter to place the job in the system.

. Catalog the MCP JCL in SYS1.PROCLIB and start the job from the system
console with a START command. You can catalog different copies of the MCP
and use the appropriate copy as your operational requirements vary.

Issue an ATTACH macro from another task.

Activate TCAM application programs any time after the MCP is activated;
deactivate them independently of the MCP. If a message arrives in the MCP for
an application program that is not currently active, TCAM places the message on
the destination queue for that application program, and it remains there until the
application program is activated and fetches the message with GET or READ
macros.

TCAM application programs

can be in a separate region or partition, or

can be attached by including OS ATTACH macros after the OPEN macros but
before the READY macro in the MCP activation and deactivation section;

can also be attached with an ATTACH macro in line in the MCP message
handler.

Overview 5

FUNCTIONAL GROUP MACROS

Activation and INTRO
Deactivation OPEN

READY
CLOSE

Data Set DCB
Definition PCB

Terminal and : TTABLE
Line Control OPTION
LOGTYPE
TPROCESS
TERMINAL
TLIST
INVLIST

Message Handler STARTMH
Delimiter Macros INHDR
INBUF
INMSG
INEND
OUTHDR
OUTBUF
OUTMSG
OUTEND

Figure 3. MCP Macro Instructions

You must close down or detach TCAM application programs before closing the
MCP.

More information on activating and deactivating the MCP and application pro-
grams and on the relationship between the MCP and application programs is

contained in the TCAM Programmer’s Guide.

Activating and Deactivating TCAM
Activate the TCAM program with INTRO, OPEN, and READY macros.

The INTRO macro

6

OS TCAM User’s Guide

performs the bulk of TCAM system initialization;

establishes addressability for the MCP;

has operands that specify various system-wide parameters dealing with
buffering, type of start-up, queuing, operator control, checkpoint/restart,
on-line test (TOTE), and diagnostic aids.

Most operands can be specified or changed at execution time at the system
console.

The OPEN macro:

L]

completes the initialization and activation of the MCP data sets;
is required for each MCP data set represented by a DCB macro.

021 270X
Job N 022
St
ream WAS BELL ‘ 023 -
1 024 RN
\\\
UNIT = 021 i\

TERMNAME TABLE™ N (“neoc:oup) “7/// ////% 7//

L
WAS c
TERMINAL TABLE DCB 83
3
LIST 1 ;/Z/ //// —_—
QcCB LIST 2
INVLIST
START OF (LCB4)
ENTRY

=

QCB

DCB LCB area

LIST 3 Legend:
The arrows indicate
——3~ - coded in the program
—==p= = not in the MCP (that is,
the JCL, etc.
mwmmlp~ - |ine control (hardware)

Figure 4. JCL, TCAM Network, and Control Block Relationship

2740
TERMINAL

// NYCDD DD
UNIT=02C

l |NYCDCB DCB DDNAME=NYCDD, —J NYC TERMINAL DCB =NYCDCB,

NYCLST INVLIST NYCMH STARTMH
MH=NYCMH , RLN =1, ORDER=(NYC+6401)
INVLIST=NYCLST TERM = 274D,
ADDR = 376401

]

Figure 5. JCL, TCAM Network, and Macros Relationship

Overview 7

Message Flow

8

OS TCAM User’s Guide

The READY macro:
« Completes the initialization and activation of the MCP; after READY
executes, TCAM is ready to handle incoming messages.

Types of start-up (specified by an operand of INTRO):

o Cold: Start from scratch; ignore the previous environment.

« Warm: Use TCAM’s checkpoint/restart facility to reconstruct the MCP
environment as it existed before closedown, and start from that point.

o« Continuation: Similar to warm, but restarts following a system failure rather
than an orderly closedown, so that TCAM’s checkpoint/restart facility is used
in a somewhat different manner to achieve the same result—a reconstructed
MCP environment without loss of completely received messages.

Deactivate with CLOSE macros, and with the MCPCLOSE macro or the SYSC-
LOSE operator command.

To close the MCP, deactivate your application programs, then issue an
MCPCLOSE macro or a SYSCLOSE operator command specifying either a quick
or a flush close.

Quick Close: TCAM stops message traffic on each line as soon as the current
message is completely received or sent. When all traffic ceases, TCAM closes the
MCP data sets and returns control to OS.

Flush Close: After the message currently being processed on each line is com-
pletely received or sent, TCAM sends all messages queued for terminals on that
line to their destinations and closes the line. When all lines are closed, TCAM
closes the MCP data sets and returns control to OS.

TCAM places a message coming into the MCP over a line into buffers that you
have assigned to that line for input operations.

The message goes through the incoming group of the message handler for the line,
and is then queued in a destination queue. If the destination queue is located on
disk, the buffers are released; if the queue is in main storage, the buffers contain
the message in the main-storage queue that you defined with the operand of the
INTRO macro (MSUNITS=).

If the destination is an application program, TCAM reads the message from the
disk or the main-storage queue into buffers, and sends it through the outgoing
group of the message handler for the application program. It is then placed on a

'special main-storage read-ahead queue until it is moved into the application-

program work area with a GET or READ macro.

Messages transferred from the application-program work area to the MCP with
PUT or WRITE macros are put into buffers and sent through the incoming group
of the message handler for the application program, after which they are placed on
a destination queue on disk or in main storage.

If the destination of the message is a terminal, TCAM reads the message from the
destination queue on disk or in main storage into buffers, and sends it through the
outgoing group of the message handler for the line. It is then sent to the destina-
tion terminal. Once the message has been transmitted, the units making up the
buffers that contained it are available for reallocation.

LINE

INCOMING

OUTGOING
LINE

BUFFER

MESSAGE
CONTROL
PROGRAM

BUFFER

LINE

MESSAGE HANDLER

r_ APPLICATION PROGRAM \l
| |
I MESSAGE HANDLER |
e _J
A
BUFFER BUFFER
Y
GET/READ PUT/WRITE
MESSAGE
WORK AREA
APPLICATION PROGRAM
Figure 6. TCAM Message Flow
Buffering Scheme

Various size buffers are constructed from fixed-sized wunits that are taken from a

unit pool, whose size you define:

o Each unit has a 12-byte prefix containing control information.

» In addition, each buffer has a prefix in which TCAM keeps message-related

control information.

Overview

9

Queuing Scheme

10

0OS TCAM User’s Guide

« The buffer holding the first piece of a message has a 30-byte prefix.

« Buffers holding subsequent pieces of the message have 23-byte prefixes.

You specify the size and number of buffers to handle I/O over the lines in a line
group in the line group DCB macro. You specify the size and number of buffers
to handle I/O between the TCAM message control program and an application
program in the PCB macro.

Before starting an I/O operation for a line, TCAM constructs a user-specified
number of buffers from units in the unit pool, and assigns them to the line. If
enough units are not currently available to construct the required number of
buffers, TCAM defers the I/0 operation until units are available. The line group
DCB macro allows you two options for allocating buffers:

1. You can specify that a relatively small number of buffers be allocated initially
to handle an I/O operation, and that more buffers are to be allocated with PCI
interrupts as they are needed (PCI=A,A).

2. You can specify that a fixed number of buffers, sufficient to hold the entire
message being sent or received, is to be available before 1/0 begins
(PCI=N,N).

Dynamic allocation (using PCI) improves performance by breaking work into
small pieces over a period of time. With dynamic allocation (option #1), fewer
buffers are tied up at any one time in an 1/0O operation than with static buffering
(option #2), but CPU utilization is higher, and incoming data can be lost since
TCAM may not be able to replace buffers as fast as they are filled (perhaps
because traffic is heavy and no units are currently available to form buffers). You
can minimize this possibility by assigning more buffers to your line, by making
your buffers larger, or by increasing the number of units in your unit pool. All of
these actions can be taken at INTRO execution time.

In TCAM, messages entered by remote terminals or application programs are
queued by destination.

Queuing by destination permits overlapping line usage in I/O operations; mes-
sages with a common destination may be received simultaneously from more than
one source, even while the destination itself is busy sending or receiving a mes-
sage. Queuing smooths out peaks and valleys in message traffic. Disk queuing
permits a high volume of concurrent terminal operations to proceed without
requiring excessive main storage for buffering.

You can locate destination queues either in main storage or on disk. You specify
in your TERMINAL or TPROCESS macro (QUEUES=operand) whether you
want disk or main-storage queuing for the terminal or application program.

A destination queue may be located

« in main storage
« ondisk
« in main storage with disk backup.

Main-storage queuing gives the best performance, but

« it may require excessive main storage;

« it compromises recovery capability.

« it may cause a reliability problem and can lose messages if memory allocated by
the MSUNITS= operand on INTRO fills up.

Message Handlers

Structure

Disk queuing is slower than main-storage queuing and requires disk and channel
resources, but you can checkpoint and restart the system after failure without
losing data if you use disk queuing.

Disk backup for main-storage queuing is a compromise; it is faster than disk
queuing but slower than main-storage-only. You can checkpoint and restart the
system after failure without losing data when you use disk backup. Also, with disk
backup, if the units specified by MSUNITS = are all used, you do not lose mes-
sages as you would with MS-only queuing.

« If you use disk queuing, you may elect to define reusable or non-reusable disk
data sets.

« With reusable queuing, TCAM wraps around when it gets to the end of the
unused space in the data set and reuses that part of the data set containing
messages that have already been sent to their destinations. A revolving zone
technique is employed internally.

» With nonreusable queuing, when TCAM gets to the end of unused space in the
data set, it suspends invitation, sends out all queued messages, and closes itself
down.

« Reusable disk permits perpetual operation, and makes the best use of disk
space, but it costs CPU time and channel usage because the disk must be
periodically reorganized.

« You can optimize disk performance by defining a data set on several volumes,
assigning each volume to a different channel; TCAM optimizes 1/0 for
multiple-arm support.

Message handlers are sets of routines you code with TCAM macros and user code
to process messages as they enter and leave the TCAM message control program.
Message handlers examine and process control information in incoming and
outgoing messages, and prepare these messages for forwarding to their destina-
tions.

A message handler can have two groups:

1. an incoming group to handle messages coming into the TCAM MCP from
stations or application programs;

2. an outgoing group to handle messages being sent from the MCP to a terminal
or application program.

These groups have subgroups:

» the inheader and outheader subgroups, which handle only headers of incoming
or outgoing messages (a message header contains control information for the
message, such as the name of its destination, an input sequence number, its
origin, etc.);

« the inbuffer and outbuffer subgroups, which handle all incoming and outgoing
message segments;

» the inmessage and outmessage subgroups, which specify what is to be done
after the entire message is received or sent (for instance, check for specified
errors and send an error message to the source or destination).

Overview 11

You include message handler functions by coding macros; among these functions
are:

« message editing
« validity checking
« message routing
» record keeping
» error handling

« system control

You can vary the path of a message through an incoming or outgoing group
dynamically, based on the source or destination of the message, or on the presence
or absence of certain character strings in the message header.

To supplement TCAM functions, you can code open or closed subroutines using
assembler and OS macro instructions and include these subroutines in your
message handlers.

Application Program Support

Interface Definition

12

OS TCAM User’s Guide

TCAM permits you to code one or more application programs and to interface
them with the MCP. Application programmers are insulated from the TP environ-
ment; they issue OS GETs, PUTs, READs, and WRITEs to move data between
the MCP and their application-program work areas.

TCAM application programs are SAM-compatible. You can debug them in a
non-TP environment using BSAM or QSAM as the access method, and a tape,
card reader, disk, card punch, printer, etc. as I/O devices. Once you have debug-
ged them, you can run application programs with TCAM without reassembly by
changing the DD statement. You can specify that either messages (OPTCD=U on
the application program DCB macro) or user-defined records be transferred when
you issue your GET/READs or PUT/WRITEs.

In the MCP, you code two macros to define the application-program interface:

1. The PCB macro specifies the message handler for the application program, the
size of the buffers to transfer data between the MCP and the application
program, and the number of buffers to be assigned at one time to handle data
transfer.

2. The TPROCESS macro establishes a destination queue for the application
program, serves as part of the PUT/WRITE interface, and specifies the PCB
for the application program.

In the application program, input and output DCB macros define incoming and
outgoing data sets for the application program. These macros are extensions of
OS DCB macros, and share many of the same parameters. Activate and deacti-
vate these data sets with OPEN and CLOSE macros. The DCB macros specify
the format and characteristics of the work units for the application program.

To transfer data between the application program and the MCP, issue a
GET/READ or a WRITE/PUT. In the macro, name the input or output DCB
macro. The DD statement named by the DCB specifies a TPROCESS macro in
the MCP. The TPROCESS macro specifies a PCB macro that names the
application-program message handler.

You can run the MCP independently of any application programs, collecting data

for later processing or sending data previously written by the application program

to its destination without having the application program resident. You can save a
great deal of main storage when you operate in this mode.

You can also coordinate checkpoint and restart in the MCP and the application

program.

[ome

Operation [Operand I

GET (or READ)

or
PUT (or WRITE)
dcbname
J
dcbname "DCB DDNAME = ddname
J
ddname DD QNAME = procname
J
procname TPROCESS PCB = pcbname
pcbname PCB MH = mhname
mhname STARTMH
MH for application
program

> application

program
J
\
Y MCP
/

Figure 7. Interface Between the Application Program and the MCP

Overview

Service Facilities

Operator Control

Checkpoint/Restart

Logging

FUNCTIONAL GROUP MACROS

Data Set DCB
Definition OPEN
and Control CLOSE
GET
PUT
READ
WRITE
CHECK

Network ICHNG
Control ICOPY
MCPCLOSE
MRELEASE
POINT
QCOoPY
TCHNG
TCOPY

Checkpoint QSTART
Control CKREQ

Figure 8. Application Program Macro Instructions

A set of commands allows you to determine the status of your TP system and
alter, activate, or deactivate portions of that system by entering appropriate
commands from the system console or a remote terminal.

This facility allows the TCAM system to be restarted with minimum loss of
message data following closedown or system failure, by periodically recording, in a
special data set on disk, information on the status of each station, destination
queue, terminal-table entry, and invitation list in the system. TCAM uses this
information to restore the MCP environment to its condition before closedown or
failure.

You can include code in your MCP to selectively copy incoming or outgoing
messages or message segments on a tape or disk. This facility records message
traffic through the MCP.

Diagnostic Aids (COMWRITE)

14

0OS TCAM User’s Guide

You can dump diagnostic information onto tape or disk. This information in-

* cludes the subtask control block (STCB) trace, the line I/0O interrupt trace and

the buffer trace.

" I/O Error Recording

You can use the extensive TCAM error-recording facilities (including OBR/SDR)
if you have terminal-related 1/0 errors.

On-Line Test (TOTE)

Using the optional TCAM on-line test facility, you can test transmission control
units and remote terminals without closing down the MCP. Use this function to:

« diagnose hardware errors;

« verify repairs;

« verify engineering changes;

« check devices periodically;

« check new stations brought on-line.

Other Internal Design Highlights
« Request-driven priority dispatching of TCAM subtasks.
« Use of ATTACH for operator control, checkpoint, TOTE and COMWRITE.
« Channel programs based on device characteristics rather than on device type.
« Multiple routing without complete multiple copies of messages.
« Disk queuing use of key and data fields to avoid extra disk activity.
« Channel program restart to initiate a new channel program for disk queuing.
« Line scheduling to provide send, equal, or receive priorities with unique

handling for buffered terminals and switched connections.

.Overview 15

TCAM Coding Aids

This chapter discusses preassembly aids to help you code your TCAM program so
that it will be as error-free as possible. The first section shows the functions of a
TCAM program in proper coding order. The second section describes macros that
you can include in your program to detect and handle errors in messages and in
the teleprocessing network.

Function Checklists

Seven checklists, in flowchart format, show the TCAM macros, their fuﬁctions,
and their proper coding order. Included are:

« how to arrange the message control program (MCP),

« how to define your buffer requirements,

« how to define message queues data sets,

« how to code checkpoint/restart needs,

« how to determine operator control requirements,

« how to include the TCAM diagnostic aids in your MCP, and
» how to arrange a TCAM application program.

Use these charts as you code; also use them to review your coded TCAM system
before you assemble it.

MCP Arrangement Checklist

Figure 9 shows how to code a message control program. It includes all macros
except the functional message handler (MH) macros. The five major sections of

“an MCP are shown in logical order. You must code the initialization, activation,
and deactivation sections in the order shown. If you follow the order of the other
sections as shown in the chart, your assembly listing will correspond to the order
of related control blocks and routines in main storage. You will then find it easier
to diagnose from a dump and your assembly listing.

Buffer Definition Checklist

Figure 10 shows all macros and operands that you must code to define the buffers
you will use in your TCAM system.

TCAM Coding Aids 17

— A5

Al A3 ont No Code
Start terminal fable INVLIST
here macros

Bl 4
Decide
F Code th 82 Code th order of Wi
e the Any exit e the ant
INTRO o ives TTABLE OUTHDR and MHs here
macro macro OUTBUF
macros
~a—Y c c4 ~C5
- Code OUTHDR,
Code a fest Have OUTBUF, and Code
for suc?essful Code them options their functional STARTMH
execution macros macro
r o1 D3 D4 D5 Y
_Y Determine Code
Code the D2 Code required INHDR and
OPEN End OPTION end-of- functional
macros macros message macros
processing
—El A —E4 E5 J
Decide on
E3 Code
&’:"Dg‘e Logging OUTMSG and order of
Messages its functional INHDR and
macre macros INBUF
macros
~F2 F3 ~ F4 5
Fl want Code the Code Code Ic:lgz'!'::l?k'
exl': code CLOSE LOGTYPE 23::’ND their f:mcﬁoml
ere macros macro macros
G ~G2 X Dc;sl
termine
f:)di:t the Code a G3 Have required
CI??)SE :n " RETURN application Another end=of-
RETURN macros to OS programs MH message
processing
O |
/ ws
B Want Code Code
No ¢ to code DCBs TPROCESS I',';"fﬁi:'::l
here macros macros
A3 Yes
N —J3 —J5
Code the Code Code
DCB TERMINAL INEND
macros macros macro
K2 —————— —K4
K1 Have Code the K3 Code K5 Need Yes
application PCB Want lists TLIST outgoing
programs macros macros group

Figure 9. MCP Arrangement Checklist

OS TCAM User’s Guide

a decimal
valuve between
0 and 65535

rm—i——

Code
DISK=YES
INTRO macro

Determine
‘Buffer=Unit
Size

c2

Code
KEYLEN =
LNUNITS =
INTRO Macro

D2
Disk
Queves

Prepare
IEDOXA
utility
input

—F1

CODEa

message

queues
DCB

CODE an
OPEN for
the DCB

FH]

Prepare a
DD statement
for the DCB

E2

Determine
Buffer
Size

F2__\

Code

BUF S1ZE=
Line Group
DCB Macro

o2 X

Determine
Number
of Input
Buffers

H2

Code
BUFIN=
Line Group
DCB Macro

J2—-‘

Determine
Number of
Output

Buffers

K2

Code
BUFOUT=
Line Group
DCB Macro

a decimal value

between 35 and 255.

It must be large enough

to accommodate the

larger of a header prefix

+ reserve bytes or a text
prefix + reserve bytes.

To conserve storoge, value
+12 should be

divisible by 8.

code 0 if you wish
to specify at
execution time

A4

Determine

which maximum number of
specified — — — = buffers allocated to
value is a line at one time

larger

program~controlled
interrupts are used to
— — = = control dynamic
buffer allocation and
deallecation

c4

Do you
want PCI?

Code

D4
H determine the type
’SW:m No ,COde pCi = required from the
torage ine group b — — - — ,
Queves DCB macro Lm Programmer's
>
E47 Are if you are, you

you inserting must reserve space

MSUNITS= sequence, date, =TT,
INTRO macro q ' 4 ;:s::i::ffer for the
—~ F5
Code second
suboperand of
In a header? RESERVE =
line group
DCB macro
G4
Number of buffers Code first
initially assigned for suboperand of
— — — —receiving operations RESERVE =
for each line in the line group
group DCB macro

Number of buffers
initially assigned for

— — — —sending operations

for each line in the
group

Figure 10. Buffer Definition Checklist

buffer size
different than
input

Code 5 A
BUFSIZE = loaging
TERMINAL

messages

macro

B4
Code it in if you omit, the larger
BUFMAX= | _ _ _ _ of the values specified
line group for BUFIN and
DCB macro BUFOQUT is used

kS Size of buffers
Code to be used to
BUFSIZE = handle msgs
LOGTYPE destined for
macro the logging

TCAM Coding Aids 19

TCAM Unit Pool Analysis

The following forms may prove useful in specifying buffer unit and buffer size,

and buffer pool requirements. They may also be useful in deciding preliminary

requirements. Final requirements are application dependent and must be deter-
mined through operating experience.

a

20 OS TCAM User's Guide

TCAM UNIT POOL ANALYSIS

LINE TYPE

Maximum Output Message = Bytes
Maximum Input Message = Bytes

Dynamic Buffering Required YES/NO PCI =

SELECTED BUFFER SIZE: BUFSIZE Bytes

Reason for Selected Buffer Size:

BUFFER REQUIREMENTS FOR 1 MESSAGE

Output Buffers = : Input Buffers =

SELECTED BUFOUT

SELECTED BUFIN

If Dynamic Buffering, SELECTED BUFMAX

NUMBER OF LINE UNITS REQUIRED

(BUFSIZE/UNITSIZE)*BUFMAX

= LNUNITS
If Main-Storage Queuing:
NUMBER OF MAIN-STORAGE UNITS REQUIRED = MSUNITS

Reason:

If Disk Queuing:

CALCULATE NUMBER OF CPBs REQUIRED

NUMBER OF CHARACTERS TO AND FROM DISK/sec = Bytes

NUMBER OF UNITS TO AND FROM DISK/sec
(characters/sec/unitsize) = Units

ALLOW 1 CPB/UNIT/sec

NUMBER OF CPBs REQUIRED CPBs

SUMMARY

UNIT REQUIREMENTS

LINE/APPLICATION PROGRAM LNUNITS MSUNITS CPB UNITS

TCAM Coding Aids

21

TOTALS

TOTAL UNITS =

"CORE REQUIREMENTS

UNIT SPACE (UNITSIZE + 12 + wasted bytes) * TOTAL UNITS
= Bytes
CPB SPACE = Number of CPBs * (72 + unitsize), = Bytes

TOTAL MAIN STORAGE REQUIREMENT ’ =

22 OS TCAM User’s Guide

Message Queues Checklist
Figure 11 shows all macros and operands that you must code to use each of the
five TCAM queuing types.

Checkpoint/Restart Checklist
Figure 12 shows all macros and operands that you must code to checkpoint and
restart your TCAM system. It also shows the macros and operands that you must
code in an application program when you want to coordinate TCAM checkpoints
of the MCP with OS checkpoints of the application program.

Operator Control Checklist
Figure 13 shows all macros and operands that you must code if you want to use
operator control from either the system console, remote terminals, or application
program.

Diagnostic Aids Checklist
Figure 14 shows all the TCAM diagnostic aids, except operator control and
checkpoint/restart, and all the macros and operands you must code to include
each diagnostic aid in your MCP.

Application Program Checklist
Figure 15 shows how to code an application program to run with a TCAM MCP.
All necessary macros, work areas, and special coding are shown.

Coding Hints to Alleviate Errors
This section discusses the TCAM macros that handle errors that occur while your
TCAM system is running. Using these macros, you can test for and recover from
both errors in messages and errors in hardware. You can also define logical errors
for your system, and use TCAM macros to test for and recover from these errors.
TCAM indicates errors in a message error record, which is defined for each
message as it is being processed.

The Message Error Record
TCAM assigns a five-byte message error record to each message while it is being
processed by the incoming or outgoing group of a message handler. Each of the
40 bits of the message error record, except reserved bits, indicates the presence
(when 1) or the absence (when 0) of a specific error that has affected or may
affect successful processing or transmission of the message.

Errors recorded in the message error record include transmission and equipment
errors (lost data, bus-out check, etc.), mistakes in entering a message (wrong
sequence number, invalid origin, etc.), and shortages of system resources
(insufficient number of buffers, insufficient space in a main-storage-only message
queues data set, etc.). The last byte of the message error record is the sense byte
for the transmission control unit being used.

TCAM Coding Aids 23 v

24

Fl
Code

QUEUES = MO
TERMINAL
macro

OS TCAM User’s Guide

oY

End

H1
Code
QUEUES = MN
TERMINAL
macro

|
Reusable
disk backup

K1
Code

QUEUES = MR
TERMINAL
macro

A2
Start

B2 pigi

A disk
or main-storage

queues

main-storage

4

C2
Code
MSUNITS =
INTRO

macro

D2 Do you
want
warnings

Code

MSMIN =and
MSMAX =
INTRO

macro

-
)}
2p, you

want disk

backup

FGZ
Code CPB = ond
DISK = YES
INTRO

macro

4

—H2

Code a
message
queves
DCB

—J2

Prepare a DD
statement for
the DCB

Figure 11. Message Queues Checklist

maximum number
of main-storage

buffer units that

may be used for

queving

Bits are set in the
message error record
when the queue is
nearly full or nearly
empty. You must
issue a MSGGEN
or ERRORMSG
macro with these
bit settings to
obtain a warning

if you omit, defaults
assigned are 50 and 70.
May also be omitted
here and specified at
execution time if you
are going to get the
1EDOO2A msg

DISK = YES says that
disk queuves are used.
CPB = specifies the
number of channel
program blocks used to
transfer data to disk

A4
(Code a

message
queuves DCB

mdcro

B4

Prepare a DD
statement for
the DCB macro

—C4

Code CPB = and
DISK = YES
INTRO macro

~D5
D4 Code
Is disk
QUEUES = DR
to be reusable on TERMINAL
macro

E4
Code .
QUEUES = DN
TERMINAL
macro

F4

Do you
want threshold
value

No

Code
THRESH =
message queues

H4 Main-
storage queues

es—Y

< End ’

specifies how full the
disk data set is to
become before a flush
closedown of the
system is initiated

Y
Determine
how often
to take an
environment
checkpoint

Cl

Code
CPINTVL =
INTRO

macro

D1 Y
Determine
how many
environment
records to
keep

El

Code
CPRCDS =
INTRO
macro

CR.

Determine
type of
restart
wanted

Gl

Code
STARTUP = =
INTRO

macro

H1 Have
application
programs?

Detemine
how many
destination
queues

K1

Code
CKREQS =
INTRO

macro

maximum number of

_ seconds. A decimal
value between 30
ond 65535

between 2 and 75
records may be

— — — = maintained on the

checkpoint data
set on disk

types are cold, warm,
and continuation. See

TCAM Programmer's
Guide for details

if you do not choose
to code it here, you
may specify the value
at execution time

destination queves in
use at any one time
for application
programs that use the
CKREQ macro
instruction

A3
Determine
environment
record to

restart
with

rB3

Code
RESTART =
INTRO
macro

rc3

Code o
checkpoint
DC8

macro

—D3

Prepare a
DD statement
for the DCB

3
Want
user exits?

~F3

Code
EXLST =
checkpoint
DCB macro

~G3

Code on
OPEN for
the DCB

A5 Have
application
programs?

0 is the latest, 1is

the next=to-latest,

etc. Maximum value
is 255 but must be less
than the value specified
in CPRCDS

Coordinating
checkpts with

D5

Code
QSTART
macro in
application
program

A

&S
Code CKREQ
macro in
application
program

exits include user-

_ label, data control
block, and user~
ABEND

—F5
Code

CKPTSYN = YES
on TPROCESS

macro

(—G5
Code

EXLST =
application
program DCB

data set must be

opened INOUT

H3 Have

No R
option fields

Want
3 them
checkpointed?,

Code o
CHECKPT
macro in

the MH

Figure 12. Checkpoint/Restart Checklist

HsJ

End

can be included in
any subgroup .

TCAM Coding Aids

25

26

OS TCAM User’s Guide

console?

c3

Determine
command
identifier

D3

Code
CONTROL =
INTRO

macro

£ Special
primary
station

Decide
which
station

G3

Code
PRIMARY =
INTRO

macro

stations
to be
secondary

<«

J3
Code

SECTERM = YES

TERMINAL
macros

K3 —)

End

~ 84
Code
CIB =
INTRO

macro

End

if not specified,

__ the system console

is automatically
assigned

must be an entry
in the terminal

_ table defined as

a secondary station
that can both enter
and accept msgs

secondary stations
must be capable

of both entering and
accepting msgs

Figure 13. Operator Control Checklist

number of commands
_ that can be entered

at any one time

from the console

the FE Common
Write logic will
copy the trace
entries for you

A3 Want ————-
your own
trace exit

Code TREXIT =
INTRO

macro

O—%

Bl
Want

on=line test

Cl
Code Specifies number
OLTEST= | — — - of 1K bytes of
INTRO storage allocated
macro to TOTE
No O1 Want Code
cross-reference COMWRTE = YES
table INTRO
macro
Yes
El €3
Code should have as Initialize
CROSSRF = - — = = — many as lines that for operator
INTRO will be opened control
macro .
> >
Fl Want

Are you
logging

dispatcher
trace

Gl
Code G3
DTRACE = Whole
INTRO messages
macro

—H3
Code a
LOGTYPE
macro
rJ3 /
Code Code a
TRacE = log DCB
INTRO 9
macro
macro
Kl ~k3—Y
Initialize tracing is started Code a K4
" for operator r‘ — = = — and stopped using LOG End
control control commands macro

Figure 14. Diagnostic Aids Checklist

TCAM Coding Aids 27

28

Cl

B1

Coordinating
checkpoints

rR3
B2 QrAM Code QSTART
reassembly before any
only executable
code

c2 J_ J
Code Y
QSTART and Establish End
prepare addressability n
CKREQ

OS TCAM User’s Guide

D1

Prepare

BSAM DCBs

El 3 E3j'
Prepare

READ, Prepare
WRITE and GET and
CHECK PUT macros

macros

Prepare
OPEN ond
CLOSE

macros

Gzy r ==
| Assembler
Prepare language and
logic of your === OS supervisor
program | and data mgmt

macros

H2

Arrange
the program

J2

Using
RETRIEVE
control

K2
Add

POINT
macro, point
to work area
and logic

Figure 15. Application Program Checklist

(A5
Add

QCOPY
macro(s)

[

FBS

Add
Wont to MRELEASE
release macros)
~C5
c4 Add ICOPY or
Copy ICHNG macros
or change g
invitation and logic to

support ICHNG

list

D5
D4 Copy Add TCOPY or
or change term TCHNG macros
or opflds and logic to

support TCHNG

l

rEs

E4

Want to Add
close MCP MCPCLOSE
macro
No l

The message error record indicates most user and hardware errors. You can

minimize your problem determination time if you use this record and issue error
messages for every error condition. Such use warns of impending trouble on the

line or in the system. It can be used to indicate internal bugs and hardware
conditions causing degradation. You may want to have an application program to

collect data and give end-of-day tallies of errors to the system control program-
mer.

Figure 16 is a quick reference table of the message error record. See the TCAM
Programmer’s Guide for more information about the bit meanings.

Using the Message Error Record to Detect Message Errors
Several TCAM macros can help you find errors in messages. Each of the follow-
ing macros sets a bit in the message error record for the message when an error in

BYTE BIT KEYWORD VALUE DESCRIPTION
First 0 Scan X's80" Scan Pointer Has Passed Message End
1 Origin X'40" lnvalid Origin Code
2 (Reserved)
3 Seq High X0 Sequence Number High or Not A Valid Decimal Number
4 Seq Low X'08' Sequence Number Low
5 (Reserved)
[} Buffers X102 Insufficient Buffers For Message
7 Cutoff x'or Message Exceeds Cutoff Limit or RVI Error
Second 8 MSMIN X'80"' Main=Storage Queue is Below MSMIN
9 MSMAX X'40' Main=Storage Queuve Exceeds MSMAX
10 (Reserved) :
1 (Reserved)
12 Tote X'08' TOTE is Not In System
13 BSC Abort X'04" Abnormal Termination During Input/Output
14 Dest xX'roz2' One or More Forward Destinations Invalid
15 (Reserved)
Third 16 —_MS Full X'80" Last Part of MSG Lost As Main-Storage Queue Full
17 Bad Ident X'40" Invalid Station ID From Terminal
18 Dest Held X'20" Destination Station Held (Intercepted)
19 (Reserved)
20 User Bit x'og' As Required By User
21 BSC Format X'o04' Invalid BSC Format (No Starting STX)
22 (Reserved) .
23 Unit Excep x'on Unit Exception Set By Transmission Control Unit
24 Selection X'80' Error During Polling Or Addressing
Fourth 25 Text X '40" Text Error During Transfer of Data
26 Switching X120 Switching Error During Connection or Disconnection
27 Station X'io0* Station Faulty
28 (Reserved)
29 Control X'o4' Control Unit Faulty
30 Channel X'oz2' Channel Faulty
31 Unknown X'or Unknown Error (TCAM Cannot Determine Cause of Error)
32 Command X'80' Invalid Command or Sequence
Fifth 33 Help X'40" Operator Intervention Required
(Sense) 34 Busout X'20' Parity Error Between TCU and Channel
35 Equipment X'10! Transmission Control Unit Has Failed
36 Data Check X'og' Parity Error Bad Binary Chk Count on Received Data
37 Overrun X'04" Received Data Lost (MPX Channel Service Not In Time)
38 Lost Data X'o2' MSG Too Long For Read Cmd or Data Read While No Read
39 Timeout X+tor Time Limit Termination of Any Receiving Command

Figure 16. TCAM Message Error Record Summary

TCAM Coding Aids

29

SEQUENCE Macro

30

0OS TCAM User’s Guide

‘the header is found. This validity checking improves the reliability of transmitted

traffic. To use the macros most effectively, you should cancel any invalid input
messages to be sure that only valid messages are transmitted. You should also
issue an error message to the terminal operator who enters an invalid input
message, so that he knows the message was not processed.

When you code it in the inheader subgroup, the SEQUENCE macro verifies the

input sequence number in the header by comparing it to an internal counter in the
terminal entry. TCAM increments this input counter for each message that has a
correct sequence number in the header. If the sequence number is not one greater
than the sequence number of the last message received from the same station or
application program, TCAM sets an error flag in bit 3 or bit 4 of the message
error record for the message. The SEQUENCE macro sets bit 3 to 1 (on) in the
message error record when the sequence number in the header is not a valid
decimal integer or when it is higher than the expected number for the next mes-
sage from the station. The SEQUENCE macro also sets bit 4 to 1 (on) when the
sequence number is low.

TCAM also places one of the following return codes in register 15:

X‘00’ good return

X‘04’ sequence number in the message is high
X‘08’ sequence number in the message is low
X‘0C’ originating station is unknown

The message is processed normally, regardless of the sequence number, unless you
cancel it.

When you code it in the outheader subgroup, the SEQUENCE macro inserts an
output sequence number in the header of each outgoing message handled by the
message handier (MH). The output sequence number is inserted when the
message is actually sent to the destination. You must reserve five bytes in your
message for the sequence number in the RESERVE= operand of the line group
DCB macro or the application-program PCB macro. TCAM maintains an output
sequence number counter in the terminal entry, and does not increment it until the
message is actually sent to the destination. TCAM does not verify the output
sequence number.

Although use of the SEQUENCE macro is optional, you should code it in both
your inheader and outheader subgroups to check for lost messages and for book-
keeping. In the inheader subgroup, executing the SEQUENCE macro can warn
you that the terminal has sent more than one message with the same sequence
number or that numbers have been skipped. For outgoing messages, executing the
SEQUENCE macro allows you to account for the messages received by a station.
Both input and output sequence numbers should be sequential. If sequential order
is not maintained in the input messages (that is, if a sequence number repeats),
you know that a message was lost before it reached the MH. If sequential order is
not maintained for outgoing messages, the terminal operator knows that a message
was lost after the MH handled it. In either case, you can tell that your problem is
caused by either trouble 'on the line or trouble in the station.

You should be aware, however, that sequential order in the sequence numbers
does not guarantee that a message has not been lost. The incoming MH may
handle a message and thereby update the input counter for the originating station,
but may not forward the message correctly to the outgoing message handler.

ORIGIN Macro

Since the outgoing MH does not handle the message at all, TCAM does not
update the output sequence number counter, and you have no indication that the
message is lost.

Using the SEQUENCE macro, you can account for message traffic on the basis of
numbers, rather than data. By examining the header it is much easier to verify
that remote terminal B received input messages with sequence numbers 1, 4, 5,
and 20 from terminal A than to compare the actual messages sent, especially when
similar or identical messages are sent more than once to a station.

You should use the SEQUENCE macro for accounting and problem determina-
tion. You should use it to put sequence numbers in outgoing messages that you
want to retrieve in an application program via the POINT macro (refer to the
TCAM Programmer’s Guide). The count is internally maintained and the se-
quence number in the outgoing subgroup lets you know which output message you
can retrieve.

For nonswitched stations, the ORIGIN macro verifies that the origin field in the
header contains the symbolic name of the station invited to send the message, by
comparing the origin field with the name of the terminal-table entry for the station
that was contdcted. For switched stations, the ORIGIN macro both verifies the
origin field in the header and identifies the calling station to TCAM. Unless the
calling station is a BSC station that transmits a unique ID sequence when it
successfully contacts the computer, TCAM does not know which station is on the
line until you issue an ORIGIN macro in the inheader subgroup of the MH. If the
origin field in the header does not match the name of a terminal entry, TCAM sets
bit 1 on in the message error record for the message. TCAM also places one of
the following return codes in register 15:

X‘00’ good return

X‘04’ invalid origin
Although use of the ORIGIN macro is optional except in message handlers for
switched start-stop stations, you should code it in all your message handlers to
improve the security of your system. You and you alone know the names assigned
to your stations by the TERMINAL macros in the MCP. These names are the
only valid sources for messages coming into your system. The ORIGIN macro
simply verifies the source. You should cancel messages with invalid origins to be
sure that messages from an ‘“‘unknown’ user are not transmitted.

An origin field in the header of your message readily identifies the station that
entered the message. You should execute the ORIGIN macro and cancel any
message with an invalid origin field in the header to eliminate any confusion that
may develop at the receiving station about the source of the message. Canceling
the message with an invalid origin is most important during inquiry processing, if
you code OPTCD=W in the application program input DCB macro. TCAM
automatically places the name of the originating terminal in the first eight bytes of
the buffer. If the name is invalid, when an incoming subgroup for the application
program handles the message with FORWARD DEST=PUT, it sends the message
to the dead-letter queue, if provided, or loses it.

Also, it is easier to determine the source of each message in your end-of-day

accounting of message traffic. Using the origin field, you can also calculate how
much each terminal uses the system.

TCAM Coding Aids 31

FORWARD Macro

TERRSET Macro

32

OS TCAM User’s Guide

When the FORWARD macro executes in the inheader subgroup, TCAM scans the
destination field in the header of each incoming message and compares this field
with the names of the terminal entries. If the destination code is valid (that is, if
TCAM finds a matching entry in the terminal name table), the FORWARD macro
queues the message for the specified destination. If the specified destination is
invalid, TCAM sets bit 14 on in the message error record for the message. TCAM
also places one of the following return codes in register 15:

X400’ good return
X‘04’ invalid destination

Besides checking the error bit or the return code, you can take three possible
actions for an invalid message:

1. If you specify an exit routine in the EXIT= operand of the FORWARD macro,
control passes to this routine. In the routine, you can correct the invalid
destination, specify another destination, or indicate that the message is not to
be processed. See the TCAM Programmer’s Guide to learn how to code this
exit. .

2. If you do not specify an exit, or if you supply an invalid destination in the exit,
TCAM queues the message for the station or application program that you
specified as the dead-letter queue in the DLQ= operand of the INTRO macro.

3. If you specify neither an exit nor a dead-letter queue, the message is overlaid
and lost.

You do not have to cancel a message with an invalid destination. Omitting both
an exit routine and a dead-letter queue causes the incorrect message to be overlaid
and lost. If, however, you wish to retain a copy of the messages directed to an
invalid destination, use a dead-letter queue rather than an exit routine for two
reasons. First, there are times you will write your own code and you might
unknowingly supply erroneous information to TCAM when you return from the
exit routine, and cause a program check in a TCAM module. The problem can
seem to be in TCAM when, in reality, the information you supplied in your exit
caused the trouble. Second, if you omit the EOA delimiter, at most two copies of
the message are sent to the dead-letter queue; whereas, if you supply a valid
destination in your exit routine, that destination will receive up to 255 copies of
the message. When there is no EOA delimiter in the message, the FORWARD
macro compares each maximum number of bytes in a terminal name (the value
specified in the MAXLEN= operand of the TTABLE macro), and any number of
bytes less than the maximum delimited by blanks, with the entry names in the
terminal name table. Figure 17 illustrates the consequences experienced when a
user-exit routine sent messages with an invalid destination to one specified
terminal. The MAXILEN= value on the TTABLE macro was 8, and the EOA
delimiter, a /, was missing. You can see from the example that using the dead-
letter queue saves you computer processing time, line time, and terminal usage
time.

The TERRSET macro sets bit 20 on in the message error record for a message.
Executing this macro is left entirely up to you. You define the conditions under
which the bit is set. Usually, you would code it to flag as an error a message that
is logically “wrong” for your message handler.

VALID I 2 3 4 5 6 7 8 9 10]
I X NYC 1 09,49.11 NYC THIS IS A BUNCH OF smsms,l,,lll...|';‘;§:_é§ss""";::;;;333:::2%%'""
2 X NYC 1 09.49,11 NYC THIS 1S A BUNCH OF SYMBOLS,,, ! |l ™ 00188s"" " M aan;; ;3335005350 00
3 X NYC 1 09.49.11 NYC THIS 1S A BUNCH OF SYMBOLS,,, I1l... " 108ss" " asn; ;3332253301
4 X NYC 1 09,49,11 NYC THIS IS A BUNCH OF SYMBOLS,,, I [l.s " 00088 e™ M aaa; ;3330055500010
5 X NYC 1 09,49.11 MYC THIS IS A BUNCH OF SYMBOLS,,, | 1l.. " 111888 """ esh;; 33312533 """
6 X MHYC 1 09,49,11 NYC THIS IS A BUNCH OF SYMBOLS,,, | 1l... " tL1gss " " aei;;;333:::%35" "'
7 X NYC 1 09.49,11 NYC THIS 1S A BUNCH OF SYMBOLS,,, |!1lee ™ LS8 0aN;; ;33305555 """
8 X NYC 1 09.49,11 NYC THIS IS A BUNCH OF SYMBOLS,,, |l1.. . " L11888" " " aak;;;333:::553 101
9 X MYC 1 09.49.11 NYC THIS IS A BUNCH OF SYMBOLS,,, | ll.. . 011888 gk, ;:3332::5350 0110
10 X MYC 1 09.49.11 NYC THIS IS A BUNCH OF SYMBOLS,,,l1l... " 111$88" " ad#;;;:333:2:%33" 111!
Il X HYC 1 09.49.11 HYC THIS IS A BUNCH OF SYMBOLS, ,, [1]e .77 L ISSe ™ ek, ;333029350

Figure 17. An Invalid Message with No Dead-Letter Queue

Using the Message Error Record to Detect Hardware Errors

STARTMH Macro

Two message handler macros notify you of hardware errors by setting bits in the
message error record. The first, STARTMH, is a delimiter macro that you must
code. The second, CUTOFF, is an optional functional macro.

Use the STARTMH macro, which you must code as the first macro in every MH,
to determine transmission errors or errors that are logical errors for your system.
If you specify either the STOP=, CONT=, CONV=, or LOGICAL= operand,
end-of-block (EOB) checking is done. This checking determines, whenever an
EOB, ETB, ETX, or EOT line control character is received, whether transmission
or logical errors occurred. Through the STARTMH operands, you control what
happens to messages in error.

For an incoming message, EOB checking is done before the message handler
processes a buffer with an EOB. Terminals with or without error checking may be
processed by the same MH even though EOB checking is done due to specifica-
tion of one of the STARTMH operands. With multiple buffer blocks, preceding
buffers could have been processed when an EOB error is detected in the message.
If a hardware error is detected and retry is possible, the operation is retried. Retry
is an error-recovery procedure in which the current block of data, from the last
EOB or ETB, is re-sent a prescribed number of times (two retries for start-stop
terminals and six retries for BSC terminals) or until it is accepted or entered
correctly. If the retry count is exhausted, STARTMH either ignores the error and
restarts the channel program to receive the next block (CONT= operand), or
terminates transmission and sends the buffer through the MH as the last buffer of
the message (STOP= operand). STARTMH branches to the user exit specified
on the LOGICAL = operand on every EOB, so you can detect errors in the buffer
containing the EOB. Use this exit to determine whether to stop or continue on
the basis of the terminals or option fields.

For outgoing messages, EOB checking is done after each block is transmitted.
You cannot check for logical errors on output messages. Transmission is success-
ful when the receiving terminal acknowledges that it successfully received the
block. Transmission errors detected by the terminal are retried. Once the retry
count is exhausted, transmission of the message either terminates (STOP=) or
continues (CONT=) with the next block.

If the STARTMH macro detects an error in the message, it sets bit 25 on in the
message error record for the message. You should issue an error message (using

TCAM Coding Aids 33

CUTOFF Macro

ERRORMSG or MSGGEN) to inform the terminal operator that the message'was
in error. He can determine the problem, since he knows if he entered an EOB or
EOT at the end of his message. If he did, either the station or the line malfunc-
tioned.

Use the CUTOFF macro to determine hardware errors. CUTOFF sets bit 7 on in
the message error record for the message if a buffer is filled with identical charac-

ters or if an incoming message reaches the maximum allowable length. If the

maximum is reached, TCAM stops receiving as soon as those buffers already
assigned to the line are filled. The CUTOFF macro does not provide you with a
precise limit on message size. If dynamic PCI is being employed, the timing may
be such internally that the PCI requirement for more buffers is honored before the
CUTOFF macro executes. After the CUTOFF macro executes, TCAM finishes
filling up the buffers currently assigned to the station. If the operator at the
station enters a very long message slowly, a request for more buffers may be
honored before the CUTOFF macro executes, and the long message may be
received. If, however, the operator enters his message quickly, he may have only
the original allocation of buffers (no PCI before CUTOFF executes). You can
sometimes receive a message much longer than one that supposedly was terminat-
ed after the predetermined length specified on the CUTOFF macro.

A good use for the CUTOFF macro is to issue it when message switching to a
buffered terminal. In this way, you can inform the operator at the transmitting
station that his message is longer than the hardware buffer length at the receiving
station, and the receiving station did not get all of the message.

You should send an error message (using ERRORMSG or MSGGEN) to the
operator who entered the message to notify him that the CUTOFF macro was
executed, and that the rest of the message will not be received. He will be able to
determine the problem, since he knows whether he entered a message that was too
long. If the message length is below the maximum, then the station has malfunc-
tioned.

Macros Dependent on the Message Error Record

HOLD Macro

34 OSTCAM User’s Guide

The execution of several TCAM functional macros depends on the contents of the
message error record. Each of these macros has a mask operand, which is com-
pared to the message error record. The macro executes if any or all of the bits on
in the mask operand are also on in the message error record. You can thus define
what is to be done when the stated error occurs. You can unconditionally execute
each of the following macros either by specifying a mask of all zeros or by omit-
ting the mask.

The HOLD macro temporarily suspends outgoing message transmission to a
station. You can suspend transmission either for a specified time interval or until
you choose to resume traffic by issuing the RESMXMIT operator command or the
MRELEASE application program macro.

Use HOLD to intercept a station; that is, to stop sending messages that should not
be sent immediately because the destination station is failing or has failed. You
cannot hold a station (via HOLD) that has main-storage queuing with no disk
backup. You define the failures in the mask operand of the macro. If any or all of
the bits in the mask are on in the message error record for the message, TCAM
sends nothing to the station following that message. If you omit the HOLD

CANCELMG Macro

REDIRECT Macro

ERRORMSG Macro

macro, messages that cannot be transmitted because the station is out of order are
treated as if they were transmitted; that is, the buffer units containing the mes-
sages are freed and become available for reuse, and the message is lost. Using the
HOLD macro assures you that once the problem has been corrected, the station
will receive all traffic directed to it. The message you issue HOLD for in the
outmessage subgroup will be retransmitted when the HOLD is released.

You should code at least one HOLD macro in your MCP. If you do not, you will
not be able to intercept a station with the SUSPXMIT operator command. You
may make the mask operand an impossible combination of errors, so that HOLD
never executes. This lets you issue operator commands, which you will need to do
if a terminal unexpectedly fails and you do not want to lose any messages for the
station.

The CANCELMG macro immediately cancels a message if any errors specified in
the mask operand are also set in the message error record for the incoming
message. A canceled message does not go to any destination, even if it is a
multiply-routed message.

If you execute an INITIATE macro for an incoming message, do not execute a
CANCELMG macro. CANCELMG is coded in the inmessage subgroup and
therefore operates on the entire message. However, INITIATE sends each
segment of a message as soon as possible after it is received at the destination
queue. Therefore, one or more segments of the message may already have been
sent before CANCELMG executes.

CANCELMG must be the first functional macro that you code in the inmessage
subgroup, and you can execute only one CANCELMG macro for a message.

Use CANCELMG to be sure that only valid messages are processed. You should
notify the operator who entered an invalid message (using MSGGEN or ER-
RORMSG) that the message was not processed and that he must reenter the
message correctly.

The REDIRECT macro queues a message for a destination, in addition to the
destinations specified by the FORWARD macro, when it finds that errors speci-
fied in the mask operand are present in the message error record for the message.

Use the REDIRECT macro when you want to return the incorrect message to the
originating terminal. With REDIRECT, you do not have to code your MCP to
find the origin field in the header and return the message. TCAM still sends the
incorrect message to all destinations specified in the header, unless you cancel the
message.

Using the REDIRECT macro, you can also send messages to an alternate destina-
tion when the original station is inoperative. If you have not coded a HOLD
macro in your system, use REDIRECT to prevent any loss in message traffic.

The ERRORMSG macro is one of TCAM'’s most useful macros for alerting you to
errors in transmitted messages or to trouble in your TCAM system. The ER-
RORMSG macro sends an error message that you specify to a designated station
when errors in the mask operand are detected in the message error record for the

TCAM Coding Aids 35

MSGGEN Macro

ERRORMSG and MSGGEN

36

OS TCAM User’s Guide

message. The error message includes the header of the message in error, followed
by the text that you write. TCAM inserts your message beginning at the current
location of the scan pointer in the first buffer. See the TCAM Programmer'’s
Guide for considerations on overlaying header or data information.

The ERRORMSG macro places the error message on the destination queue for
the station that you select to receive the message, and sends it through the outgo-
ing group of the MH. Therefore, you must be sure that the format of the errone-
ous message header is compatible with the macros executed in the outgoing group
that handles messages for the station receiving the error message. You can use
alternate paths through the MH, by coding the MSGTYPE or PATH macros, so
that, by distinguishing message types, you will not have to be concerned with the
header format.

You should identify the originating station as the destination of the error message.
You should also notify the operator who entered the message of what was wrong
with the message and how TCAM is processing it. For example, if an invalid
origin is detected, you can issue the message

INVALID ORIGIN - MESSAGE CANCELED - RESEND

Your message should be meaningful! The message can have a maximum of 255
characters or two buffer units (2 * KEYLEN= value), whichever is less. This
count must include all necessary line-control characters. You should include all
line-control characters (STX, ETX, EOB, ETB, etc.) in all messages or issue the
MSGFORM macro in the outheader subgroup.

The ERRORMSG macro also has an EXIT operand that you can code to complete
error message processing. For instance, you can use this exit to provide the
terminal operator with the correct input sequence number if he enters an invalid
number. Figure 18 shows how you can code the routine.

The MSGGEN macro generates a message that you define if the errors in the
mask operand are detected in the message error record for the message. The
generated error message bypasses all normal functions; there is no message
handler processing, no queuing, no logging, and no buffer requesting. You must
supply line-control characters. The error message refers to the last transmission
since the line is never freed in between message transmission and execution of the
MSGGEN macro. The MSGGEN macro inforins you more rapidly than ER-
RORMSG that you have an error, but it does not return the header.

If you code MSGGEN in the incoming group, TCAM sends the error message to
the origin. If you code it in the outgoing subgroup, TCAM sends the message to
the destination. The maximum length of the error message is 24 bytes. This count
includes all necessary line-control characters. Again, you should supply all
line-control characters for all your MSGGEN messages.

Both macros let you issue error messages. The following chart compares the two
macros.

GETSEQ CSECT

USING GETSEQ, 12

USING IEDQAVTD, 13

USING IEDQPRF, 3

USING IEDQTRM, 1

LR 12, 15 SAVE ENTRY AND SET BASE

LR 2, 14 SAVE RETURN ADDRESS

LR 3,1 SAVE BUFFER ADDRESS

LR 4,0 SAVE REGISTER 0

LH 1, PRFSRCE GET SOURCE INDEX

N 1, AVTCLRHI CLEAR HIGH TWO BYTES

LTR 1,1 TEST FOR ZERO

BZ NOGO IF YES-CANNOT GET SEQUENCE

L 15, AVTRNMPT GET TCAM INTERNAL ROUTINE

BALR 14, 15 GIVE IT CONTROL

LH 5, TRMINSEQ GET INPUT SEQUENCE

IT IS IN BINARY FORMAT
PROCESS IT AS REQUIRED

B EXIT BRANCH TO COMMON EXIT
NOGO EQU * DO WHATEVER PROCESSING IS
* NEEDED IF NO SEQUENCE
EXIT EQU *

LR 1,3 RESTORE BUFFER ADDRESS

LR 0, 4 RESTORE REGISTER 0

LR 15, 12 RESTORE ENTRY POINT

LR 14, 2 RESTORE RETURN ADDRESS

BR 14 RETURN TO TCAM

TAVTD AVT DSECT

TPRFD PREFIX DSECT

TTRMD TERMINAL ENTRY DSECT

END

Figure 18. An ERRORMSG Macr

ERRORMSG

255 bytes or two units—
maximum message length

header of message in error
precedes error message text

slow—
message processed by MH

exit for user-written routine

can specify destination of
generated message

o Exit Routine

MSGGEN

24 bytes—
maximum message length

no header

immediate response—

no MH processing

no exit

no choice of destination—

incoming returned to origin—
outgoing sent to destination

This chart shows that the major advantage of using MSGGEN is that it is faster,

since you do not have to process the header through the message handler. Howev-
er, you do not have an exit routine, the maximum length is small so it is difficult to

send meaningful messages, you have no choice of destination, and you do not get

TCAM Coding Aids

Logging

38

OS TCAM User’s Guide

the header, which can be a valuable tool to trace the message or terminal that
created an error.

You can use logging in two ways: first, as an integral part of the system, recording
messages for accounting; and second, as a programming aid, helping you to
diagnose errors and to find the information you need to evaluate system perform-
ance.

You may want to record all messages for accounting, even though they were
successfully sent to their destinations. The best way to obtain a meaningful
accounting report is to either record the entire message (code the LOG macro in
the inmessage or outmessage subgroup) or to record only the header segment
(code the LOG macro in the inheader or outheader subgroup). You should record
only the header segment if you have meaningful data in the header, such as the
origin, time, date, and destination terminals. Some accounting uses of logging are:

1. Copying groups of messages sent over a long period of time to a variety of
destinations.

2. Providing long-term backup for messages that are accepted by one or more
destinations but later lost through human error.

3. Collecting exceptional cases.

The log is also a good programming aid. If you include a carefully designed
message-logging facility in your message handler, you can trace the flow of
messages through your MCP; thus, you can quickly find errors while you are
diagnosing the MCP. By examining the log, you can see what message handler
processing has been performed on the message, and locate the subgroup in which
the message becomes incorrect.

In your initial stage of programming a TCAM MCP, the use of the OS/360 WTO
macro interspersed at appropriate points is beneficial in tracing a message through
message handler processing.

The log also helps you more efficiently allocate the resources of your telecommu-
nications system. Do this by analyzing the flow patterns of the message traffic.
When you first execute the MCP, include the log facility to record such informa-
tion as time, origin, and destination for each message, or, in cases where traffic is
heavy, for representative messages. You can then reallocate your resources for
more efficient processing.

TCAM Problem Determination Aids

This chapter suggests where you can look in your code when you have an error.
Each possible problem area is discussed. Lists of the more common errors that
can be made are given. Use this chapter to review your code before you first run a
TCAM program. Use it also when you have a problem to review possible problem
areas.

In addition to errors in your code, this chapter also summarizes other sources of
errors, such as hardware, software, and those that might be caused by system
console operators, and terminal users.

Application Program Considerations
If you suspect a problem in one of your TCAM application programs, use this
section to help you find it. The section includes suggestions for coding and
examining your application programs and their interface with your TCAM mes-
sage control program (MCP), a summary of message handler macro instructions
that can affect your application program, and a checklist of common errors to help
you isolate your problem. An application program is just another terminal as far
as TCAM is concerned. It is a valid destination for messages, and must have a
destination queue to which the GET is issued. The location of the queue is
specified by the QUEUES= operand of the TPROCESS macro. The QNAME=
parameter on the DD card specifies the name of the process entry with which the
destination queue is related.

Examining and Coding an Application Program
When you begin to write an application program to run as part of a TCAM
system, you should write your program and its MCP message handlers as simply as
possible, and use only enough code to establish the TCAM interface and to test
the transfer of messages or data between your program and the MCP. After you
have successfully tested the interface, you can easily add more sophisticated code.

Before you code or diagnose application programs, you should be thoroughly
familiar with Writing TCAM-Compatible Application Programs in the TCAM
Programmer’s Guide. Study carefully also, the discussion of the LOCK macro and
how to code it, and how to code DCBs and PCBs, since severe errors can result

' from their misuse or non-use.

Define and open DCBs for the application program in the application program.
Test for successful open for every data set (DCB) for which you issued an OPEN
macro.

Define one PCB macro in the MCP, nor in the application program, for each
application program. Do not issue an OPEN for a PCB.

Define one TPROCESS macro in the MCP for each queue used by an application
program—one for GET or READ, one for PUT or WRITE. More than one
TPROCESS macro can name the same PCB. If two TPROCESS macros name the
same PCB, the GET or READ TPROCESS macro must specify the QUEUES=
operand, and the PUT or WRITE TPROCESS macro must not specify the
QUEUES= operand.

TCAM Problem Determination Aids 39

If you will issue operator commands from an application program, you must code
the ALTDEST= operand on the TPROCESS macro for the PUT or WRITE to
name the terminal that is to receive replies. Otherwise, any reply to operator
commands is sent to the dead-letter queue, or, if no dead-letter queue is specified,
the reply is lost.

You can run application programs as separate tasks or as subtasks of the TCAM
MCP, but, in either case, they must have a priority lower than that of the MCP. If
the application program runs as a separate task, lower its priority with the OS
CHAP macro. If the program runs as an attached subtask, lower its priority with
the LPMOD= operand of the ATTACH macro.

All application programs must follow standard linkage conventions in saving and
restoring the registers of the calling program, whether the program runs as a
subtask or as a separate task.

You must close each application program, since TCAM does not close normally as
long as there are any open data sets (DCBs) in the application programs. The
SETEOF macro, used with the EODAD= operand of the application-program
input DCB macro, is not intended to do this. You can use SETEQF this way,
however, if you ensure that the DCBs are open when a GET or READ is issued,
but closed when the closedown command (Z TP) is issued.

If the application program runs as a separate task, the system operator can close it
with the CANCEL command. However, if it runs as a subtask, you must close it
some other way, since the CANCEL command cannot locate the application
program. One way to close an attached subtask is to have the application program
test for a special closedown message sent to it by a terminal, and to branch to a
closedown routine when it receives this message.

Remember that TCAM sometimes uses part of the work area you defined in your
application program to pass data to you (see Transferring Data Between an

MCP and an Application Program in the TCAM Programmer’s Guide. This data
can include the SAM prefix, the position field, and the name of the terminal that
originated the message. You must not destroy or improperly update these fields.

For instance, if you specify OPTCD=W in the input DCB macro, TCAM places
the name of the originating terminal in the first eight bytes of your work area.
You can send a reply to that terminal by coding FORWARD DEST=PUT in the
inheader subgroup of the application program message handler. If you code
OPTCD=W, and the terminal is on a switched line with no ID characters, and if
no ORIGIN macro identifies the terminal, TCAM has no way of knowing where
the message was entered. This leaves the eight-byte field blank. Therefore, if you
code FORWARD DEST=PUT, be sure that the work area is not blank. If you do
not specify OPTCD= U on your output DCB, the work unit is assumed to be a
record and TCAM will not transmit the work unit until you have indicated that it
is an entire message. If you wish to transmit each work unit that you send be sure
to specify OPTCD=U.

- If you do not use the eight-byte prefix set up by TCAM, then code the destination
terminal name in the message, just as you would for any terminal, and code a

normal FORWARD macro in the message handler.

Any message sent by the application program should include a carrier return and
an EOT. If you omit the EOT, the terminal will time out waiting for an EOT.

40 OS TCAM User’s Guide

TN

Message Handling for an

Use the MSGFORM macro to insert the EOT character automatically where
needed. Use of the MSGFORM macro is restricted to the outheader subgroup of
the message handler and should be the first macro after OUTHDR to assure its
execution.

Either messages sent by an application program to a terminal must be coded in the
line code for that terminal, or you must issue a CODE macro in the outgoing
message handler for that terminal. If you use line code in your application pro-
gram, then:

1. the types of terminals to which you can send messages is limited to those of a
common line code, and
2. the chances of error are greatly increased.

If you use EBCDIC and translate messages to line code with the CODE macro,
then:

1. you can send messages to any terminal in the system and
2. messages are error-free.

The amount of main storage and time you save by trying to use line code in the
application program is usually not enough to offset the disadvantages.

To make your system more efficient, be sure that the work-unit size in the appli-
cation program is compatible with the buffer size in the MCP. See
Application-Program Buffer Design Considerations and Transferring Data
Between an MCP and an Application Program inthe TCAM Programmer’s
Guide. Note particularly the restrictions at the end of the latter section.

If you code any non-TCAM macros (for instance, STAE, SYNADAF, or SY-
NADRLS), or if you use the SYNAD= or any other exit, read the appropriate OS
publications. The TCAM Programmer’s Guide covers only what affects TCAM.

Application Program

Six message handler macros affect or can affect an application program; seven
macros cannot be coded in the message handler for an application program. The
macros that you cannot code are CUTOFF, LOCK, MSGFORM, MSGGEN,
MSGLIMIT, SCREEN, and UNLOCK. Following is a summary of the macros
that can affect an application program.

Macro Function

CODE Code this macro if you want to issue operator commands in
your application program.

COUNTER Use this macro to statistically record message volumes proc-
essed in your program (such as the total messages in and out,
data volume handled, types of messages).

FORWARD Use this macro explicitly if your messages include the destina-
tion (DEST=**) or, if you define the destination in the PUT
work-area prefix of your application program, use
DEST=PUT.

MSGEDIT Use this macro to deblock output messages going to your
application program by inserting record delimiter characters
(as specified in the RECDEL = operand of the TPROCESS
macro). Use it also to delete insignificant data from input
messages. '

TCAM Problem Determination Aids 41

42

OS TCAM User’s Guide

PRIORITY

SETEOF

The priority level specified places messages on the read-ahead
queue in priority order. There is no further priority processing.

Use this macro to enter your EODAD routine. The application
program enters the EODAD routine when it receives the mes-
sage following the message for which SETEOF executes.

Typical Errors

Following is a list of common errors that can be made in coding an application

program and its interface in the MCP. It is in the form of questions, with
YES/NO answers, against which you can examine your code.

Question

1. Did you follow standard linkage conventions?

2. Did you code an OPEN for each DCB?

3. Did you check each OPEN for successful completion?
4. Did you issue an OPEN for a PCB?

5. Did you destroy or overlay your work-area prefix?

6. Did you code closedown procedures?

7. Is your work-area size compatible with TCAM buffer

11.

12.

13.

14.

15.
16.

17.
18.

19.
20.

21.

22,

23.

24.
25.

size?

Are your incoming and outgoing work units
compatible?

Is your destination correct for a lock response?

Did you code the QUEUES = operand of the
TPROCESS macro for GET or READ?

Did you include an EOT in every message from your
application program or MSGFORM macro in your
outheader subgroup of the terminal receiving

the message?

Do your application programs have lower priority
than your MCP?

Did you specify a terminal to receive replies from
operator commands (in the ALTDEST= operand of
the TPROCESS macro)?

Did you specify a record delimiter for fixed-length
records or messages?

Did you specify enough buffer units?

Is your work-area size for copy functions large
enough when using the TCOPY macro or when
displaying the option fields by an operator control
command?

Did you specify a work-unit size for PUT or WRITE?
Did you activate your application program before
you started your MCP? ,

Did you omit any DD statements?

Did you specify initiate mode for a single-buffer
message?

Did you omit the BLKSIZE= operand of the DCB
macro for GET in locate mode?

If you are using initiate mode, is the conchars

string entirely in the first buffer?

When you are using message processing, did you
specify the OPTCD=U operand of the DCB macros?
Did you check all return codes provided by TCAM?

If you specified OPTCD=W on the INPUT DCB macro,

did you make your work unit eight bytes larger
than the buffer size defined on the DCB macro?

Right

YES
YES
YES
NO

NO

YES
YES

YES

YES

YES

YES

YES

YES

YES

YES
YES

YES
NO

NO
NO

NO
YES
YES

YES
YES

Wrong

NO
NO
NO
YES
YES
NO
NO
NO

NO
NO

NO

NO

NO

NO

NO
NO

NO
YES

YES
YES

YES

NO

NO

NO
NO

TCAM Problem Determination Aids

43

Message Control Program Considerations

As a system programmer writing a message control program (MCP), you have five
basic tasks:

1. Defining TCAM terminal and line control areas.

2. Defining the buffers TCAM uses to handle, queue, and transfer message
segments between communication lines and queuing devices.

3. Defining TCAM data sets.

4. Activating and deactivating TCAM and its data sets.

5. Defining the message handlers, the sets of routines that examine and process
control information in message headers, prepare message segments for forward-
ing to the destination, and route messages to their proper destination. The
following sections are lists of suggestions, considerations, and typical errors in
each of these coding areas.

Defining TCAM Terminal and Line Control Areas

If you suspect a problem in your terminals or lines, review this section to help you
find it. You should also be familiar with Defining Terminal and Line Control
Areas and Appendix G. Device-Dependent Considerations in the TCAM
Programmer’s Guide.

General Hardware Considerations

You must know your hardware. Incorrect coding of polling and addressing
characters is a common error. You can find these characters, along with end-to-
end control sequences, in hardware publications.

All terminals connected to a given line must have the same characteristics.

Use transparent mode for BSC devices if you send messages containing binary
data, fixed- or floating-point data, packed decimal digits, source programs, or
object decks, because the binary structure of a character may be the same as that
of a data-link control character.

TERMINAL Macro Instruction Considerations

44 OS TCAM User’s Guide

Code a TERMINAL macro for a group entry that represents a group of terminals
on a line that has the group addressing hardware feature and is for output only.
Specifying a single set of unique addressing characters sends messages simultane-
ously to all terminals in the group. If you also want to address or poll a member of
the group individually, you must code another TERMINAL macro for that entry.

Code a TERMINAL macro with the operand UTERM=YES for a line entry that
defines a switched line for input or input/output operations. The stations on the
line do not necessarily identify themselves when calling the computer.

Issue TERMINAL macros for stations on the same line together. Do not code
two TERMINAL macros with different names for the same buffered station, since
message segments may become intermixed during receiving or sending, and a text
segmeént may be treated as a header.

Specify ALTDEST= in the TERMINAL macro for terminals on reusable disk
queues. When a reusable disk is cleaned up, TCAM requeues any unsent mes-
sages in the queue for the terminal specified. If you omit this operand, unsent
messages on the queue are marked serviced and may be overwritten and lost with
no error indicated. It is preferable not to specify the alternate destination with the

Option Field Considerations

Other Considerations

T ypical Errors

same name as this TERMINAL macro. If you do, and if there is hardware trouble
on the line, your messages are not lost, but they consume both space on the queue
and processing time to move them on each cleanup.

The OPTION macro specifies the name and type of the option field. It does not
initialize or allocate storage. The OPDATA= operand of the TERMINAL macro
initializes the option field for the particular terminal entry.

- You can assign option fields having identical names and attributes but different

contents to different stations, components, lines, or application programs.

Example: COUNT OPTION H
MSGLMT OPTIONCL]
REDRECT OPTIONCL3
ERRMSG OPTIONCL4

The OPTION macros define a 10-byte option area for entries in the terminal
table. If the OPDATA= operand of terminal A (a 1050) was coded OPDATA=
(0, 0, NYC, PITT) a 10-byte storage area would be set aside in the option table
for use by MH macros in handling messages to and from terminal A. The
COUNT and MSGLMT field would initially contain 0, REDRECT would contain
NYC, and ERRMSG would contain PITT. If the OPDATA= operand for termi-
nal B (a 2740) was coded OPDATA= (,,ALA,CHI), a 7-byte storage area would
be set aside in the option table for use by MH macros in handling messages from
terminal B. REDRECT would contain ALA and ERRMSG would contain CHI.

The order in which you code OPTION macros determines the order in which you
must code the initial data in the OPDATA= operand of the TERMINAL macros.

Do not waste space in your option table. For example, if you code

AA OPTION FL1
AB OPTION CL4
AC OPTION H

you waste a byte of storage, since AC must be on a halfword boundary.

Do not use main-storage-only queuing in a LOGTYPE macro. If the log DCB is
not open, messages build up in main storage and exhaust your buffer units.

Following is a list of common errors that can be made in coding terminal and line
control areas. It is in the form of questions, with YES/NO answers, against which
you can examine your code.

Question Right Wrong

1. Does the UCBTYPE field in the UCB for the line in YES NO
the nucleus specify the correct characteristics for
the terminal or terminals on the line?

2. Did you consider device dependencies? (See Appendix YES NO
G of TCAM Programmer’s Guide.)

TCAM Problem Determination Aids 45

3. Are your polling and addressing characters YES NO

correct?

4. Do all terminals connected to a given line have the YES NO
same characteristics?

5. Did you issue TERMINAL macros in a line group YES NO
together and in ascending relative line sequence?

6. Did you immediately follow the TERMINAL macro YES NO

for a station with the TERMINAL macros for the
individual components of that station?

7. Did you specify BFDELAY = in the TERMINAL macro NO YES
for a terminal other than a 2740 Model 2 or a multipoint
27707

8. Did you define a TPROCESS macro for each queue to YES NO
which an application program can issue a GET or READ?

9. Did you define at least one TPROCESS macro for all YES NO
PUTs and WRITEs from the same application program?

10. Did you code a name on each OPTION macro? - YES NO

11. Do your OPTION macros immediately follow the YES NO
TTABLE macro? _

12. If you have OPDATA= defined in the TERMINAL YES NO

macro, did you replace option fields not defined
for the particular entry with a comma
(except trailing commas)?
13. Is the BUFSIZE= operand of the LOGTYPE macro YES NO
a multiple of the value specified in the KEYLEN=
operand of the INTRO macro?
14. Does the NCP= operand of the LOG DCB have a YES NO
value which is at least the number of units in the
buffer you are going to be logging? (NCP= is the
number of writes before a check.)

Defining TCAM Buffers
If you suspect a problem in your buffers, review this section to help you find it.

You should also be familiar with Defining Buffers in the TCAM Programmer’s
Guide.

Remember that a buffer is made up of one or more buffer units. A buffer unit can
be between 35 and 255 bytes, and a buffer can be between 35 and 65535 bytes.

Use larger buffers (more units per buffer) because:

" 1. Fewer buffers are required for a message. Therefore, TCAM requires less
overhead to manipulate buffers.
2. When you use dynamic buffer allocation (PCI), the possibility of losing data
because of a delayed PCI is decreased.

. The number of PCIs required, if PCI is specified, is decreased.

4. You make better use of the TCAM disk accessing method (multiple-arm
support), because there is a larger number of contiguous records than there
would otherwise be.

5. There are fewer queuing operations per quantity of data; this saves time.

w

Use smaller buffers (fewer units per buffer) because:

46 OS TCAM User’s Guide

1. Units in smaller buffers return to the available-unit queue more rapidly than
units in larger buffers, since it takes less time to empty and fill a smaller buffer.
Therefore, you can have a smaller unit pool since allocation of resources occurs
more frequently.

2. TCAM’s work load is broken into smaller pieces, resulting in a more equitable
allocation of processing time among message segments in main storage.

Use more units in the system because:

1. You are less likely to lose message data coming in over a line.
2. You are less likely to delay outgoing messages due to waiting for a buffer.

Use fewer units in the system because:

1. Main storage is used more efficiently. Since the number of units in the free
pool is not excessive, you save main storage.

Use larger units because:

1. Disk space is used more efficiently, since there are fewer interrecord gaps.

2. The area available for text compared to the area containing management
information is relatively large.

3. Since more data is transmitted per CCW on lines and disk, the channel activity
is relatively light; this saves channel fetch and CPU time.

4. You need fewer channel program blocks (CPBs) to transfer the same amount
of data to and from disk; this saves storage space and time, since there is less
CPB queuing.

Use smaller units because:

1. Duplicate headers, used for multiple routing of messages, take up relatively
little room.

2. You can specify a relatively large range of buffer sizes without wasting space in
main storage and on disk.

3. You can reallocate buffers more frequently with smaller units, since they pass
through the system more rapidly than larger units.

Use dynamic buffer allocation because:

1. When you code PCI=A, fewer buffers are assigned initially to a line, since
dynamic allocation brings the number of buffers assigned up to the value
specified by BUFMAX= and maintains this number if possible.

2. When you code PCI=A and a negative response to invitation occurs, only the
number of buffers assigned initially, rather than the maximum number assigned
to the line, have been fruitlessly allocated.

3. When you code PCI= as A or R, buffers are continuously deallocated. The
free-unit pool is therefore continuously being replenished, and a smaller unit
pool is required.

4. When you code PCI= as A or R, a message moves one buffer at a time; there-
fore, fewer CPBs are required to achieve the same performance.

Use static buffer allocation because:

1. Dynamic allocation and deallocation of buffers takes processing time.

2. When you use reusable disk queues, records written to disk by the PCI inter-
rupt are not serviced until the entire message is queued. If the length of time
required to enter a message is excessive, or if reusability servicing is very
frequent, records may be overlaid. If this occurs, TCAM terminates abnormal-
ly with a system code of 045 and a return code of 02 or 03 in register 15.

TCAM Problem Determination Aids 47

48

0OS TCAM User’s Guide

For start-stop lines using dynamic allocation, if you specify BUFIN=2,
BUFMAX=2, dynamic allocation may be inefficient.

The number of buffers you assign initially to each line (BUFIN= and BUFOUT=
operands) depends on:

 terminal type,

« terminal speed,

« line speed,

» whether dynamic allocation of buffers is specified.

The faster the data is transmitted, the higher the initial assignment should be.

For high-speed BSC lines, dynarriic allocation may not be totally effective; that is,
there may not be a one-to-one correspondence of replacement buffers to replaced
buffers.

Remember that a line does not have both BUFIN= and BUFOUT= assigned at

the same time. In deciding how many units to define, you need be concerned only
with the initial requirements for send or receive operations. A formula to approxi-
mate how many units you need in your system is:

1. Determine for each line the maximum, average, and minimum message length.

2. Select the optimum buffer size for each line group for input and output.

3. Based on all line group buffer sizes, select an optimum unit size for the message
control program.

4. Based on optimum unit size, re-specify buffer sizes for each line group to more
efficiently utilize the units.

5. To Determine the maximum line units required for all lines, take the sum of the
product of the maximum number of buffers for each line multiplied by the
quotient of buffer length divided by unit length.

Maximum

LNUNITS = 2 Number * Buffer Length
of Buffers Unit Length
Per Line

If you use disk queuing, try to make the buffer size specified by the source of a
message equal to the buffer size specified by the destination. When the buffer
sizes specified for the origin and destination are different, data movement occurs
because TCAM must add or delete prefixes when it places the message in the
buffers for the destination. Moving data takes time.

Remember that BUFIN= or BUFOUT= is satisfied when a line is opened active.
When you start an operation and have dynamic buffering, BUFMAX = is satisfied.
Do not be frugal with your unit-pool size. If you are, you degrade your system,
since TCAM does not have enough buffer units to perform adequately.

Operator commands from stations and application programs must be contained in
a single line buffer; if the buffer is too small, the command is truncated and an
attempt is made to process it.

You can spot unused buffer units in the buffer-unit pool because they have only
the link field filled in the prefix. The remainder of the buffer prefix and unit are
Zeros. '

TN

Typical Errors

Following is a list of common errors that can be made in defining buffers. It is in
the form of questions, with YES/NO answers, against which you can examine

your code.

Question Right Wrong

1. To save main storage, is 12+ KEYLEN=evenly YES NO
divisible by eight?

2. Is the BUFSIZE= operand on the DCB macro evenly YES NO

divisible by the unit size specified in the KEYLEN=
operand of the INTRO macro?

3. Did you allow room for the buffer prefix (30 bytes YES NO
for a header buffer and 23 bytes for a text buffer)?
4. Is each buffer unit at least 35 bytes and no YES NO

longer than 255 bytes (not counting the 12-byte
control area that TCAM adds)?

5. Is each buffer at least 35 bytes and no longer YES NO
than 65535 bytes?
6. For BSC lines using dynamic allocation, YES NO

did you code the BUFMAX= operand at least two
greater than the larger of BUFIN= or BUFOUT=?
7. Is BUFMAX >BUFIN/BUFOUT? YES NO
8. Are your buffers long enough to hold an operator YES NO
control command?

Defining TCAM Data Sets
If you suspect a problem in your data sets, review this section to help you find it.
You should also be familiar with Defining the MCP Data Sets in the TCAM
Programmer’s Guide.

Line Group
A line group may consist of from one to 255 lines. The size of a line group is
limited by the fact that the INVLIST = operand of the DCB macro can be no
longer than 255 characters, including commas; thus you cannot have 255 invita-
.tion lists for a line group.

All lines in a group must have the following common characteristics:

. All must be switched or all must be nonswitched.

. All use start-stop or all use binary synchronous transmission.

. All lines are associated with stations having the same device characteristics.

. All use the same invitation delay.

. All use the same message handler.

. No line in the group is a member of another group.

. All are preassigned the same number of buffers to handle initial segments of
incoming messages.

Be aware of the A/B suboperands on the INVLIST= operand if you use a 2701
Transmission Control Unit.

NN =

Any number of output-only lines may refer to the same invitation list name.

The RESERVE= operand reserves space in incoming header units and text units,
although data may be inserted in either the incoming or outgoing message handler.

TCAM Problem Determination Aids 49

Message Queues

50 OS TCAM User’s Guide

If there is not enough space (if BUFSIZE= is too small), the macros that insert
data (DATETIME, SEQUENCE) do not execute.

Be sure you use the right translation table, and know its characteristics. For
instance, a folded table recognizes both uppercase and lowercase letters as valid.

You must code the SCT= operand if you specify your own table in the TRANS=
operand. The SCT= operand must be a valid TRANS= entry. You cannot
specify your own special characters table.

When you concatenate DD statements for a line group, their arrangement deter-
mines the relative line numbers of the lines. The relative line number is a number
assigned by you to a communications line of a line group at system generation
time or MCP execution time. If a line group is defined at system generation time
by the UNITNAME macro, the lines in the group are assigned relative line
numbers according to the order in which their hardware addresses are specified in
the UNIT= operand; the line whose address is specified first is relative line one,
the address specified second is relative line number 2, etc. If a line group is
defined at MCP execution time by concatenated DD statements, the arrangement
of the DD statements determines the relative line numbers for the lines.

Example: //GROUPONEDD UNIT = 015
// DD UNIT = 016
// DD UNIT = 017

Line 015 is RLN=1, line 016 is RLN=2, and line 017 is RLN=3. Since RLN=
operand is assembled in your MCP in the TERMINAL macro, the order of the
DD cards cannot be disturbed. If one is removed, a dummy must replace it.

Do not have more DD cards than INVLIST = operands in the DCB.

Remember that one channel program block (CPB) is involved whenever the
contents of a buffer unit are written to disk or read from disk. The number you
need depends on the amount of message traffic during the peak period of activity
for the TCAM system.

Too few CPBs cause poor disk performance. Messages are delayed while TCAM
waits for CPBs to become available to place the messages on or remove them from
disk.

Too many CPBs waste main storage.

To investigate CPB availability, AVT+X‘46C’ points to the first entry in the CPB
free pool. The thirteenth word points to the next lower CPB entry on the queue.
In a dump, if the first few words of the CPB are zero, then that CPB and all that
follow are unused. If no CPBs are zero, then you probably need more CPBs.

When you preformat your disk data set, using utility IEDQXA, be sure that the
KEYLEN= operand is the same as that specified on the INTRO macro when you
attempt to open the data set.

You increase disk efficiency if you space disk message queues data sets over
several volumes.

Checkpoint and Log

Typical Errors

On the DCB macro for a message queues data set, be sure that the OPTCD=
operand has the correct specification:

OPTCD=L for nonreusable disk data sets
OPTCD=R for reusable disk data sets.

In the DD statement for the checkpoint data set, if you specify DISP=NEW, you
will always get a cold restart.

If you log both messages and message segments, define two separate data sets.
You can have only one LOGTYPE macro per DCB. :

Following is a list of common errors that can be made in coding DCBs for TCAM
data sets. It is in the form of questions, with YES/NO answers, against which you
can examine your code.

Question Right Wrong
1. Did you specify one line group DCB macro for each YES NO
line group in the system?
(Does each line have a DCB associated with it?)

2. Do you have more than 255 lines in a line group? NO YES

3. Are the BUFIN=, BUFOUT=, and BUFMAX= YES NO
operands of the DCB all specified from the same source?

4. Are the listnames in the INVLIST= operand YES NO

specified according to ascending relative line
numbers of the lines in the group?

5. Is there one invitation list name in the YES NO
sublist for each line in the line group?

6. Did you include framing parentheses in the PCI= YES NO
operand (for instance, PCI=(A,A))?

7. If you specify CPRI=R and you want to YES NO

send output messages to the terminal, did you code a
polling interval delay in the INTVL= operand?

8. Did you include at least one DD statement for each YES NO
line group data set?

9. Did you specify at least two CPBs for reusable disk YES NO
queuing?

10. Did you specify at least one CPB for nonreusable YES NO
disk queuing?

11. Do you have at least as many CPBs as the maximum YES NO

number of buffer units per buffer in the system
(so that an entire buffer can be dispatched with
a minimum number of operations)?
12. Is the KEYLEN= operand on the log data set DCB YES NO
macro the same as the KEYLEN= operand on the
INTRO macro?

TCAM Problem Determination Aids 51

Activating and Deactivating TCAM

INTRO Macro

OPEN Macro

52

0OS TCAM User’s Guide

If you suspect a problem in activating or deactivating TCAM, review this section
to help you find it. You should also be familiar with Activating and Deactivating
the Message Control Program in the TCAM Programmer’s Guide, GC30-2024.

Do not code the INTRO macro until you have read the sections in the TCAM
Programmer’s Guide for the functions to which the operands refer.

You should allow for a dynamic INTRO macro by omitting one of the following
operands when you assemble:

STARTUP=
KEYLEN=
LNUNITS=
if DISK=YES, CPB=.
In response to the message
IEDOO2A SPECIFY TCAM PARAMETERS
each response can be a maximum of 41 characters. You keep getting the same

message until you specify ‘U’, which indicates that you have no more operands to
enter.

If you still omit one of the four required operands, TCAM tells you the specific
operand missing. ‘

An error in a keyword for an operand in the reply prevents interpretation of any
keywords in the same response to the right of the keyword in error.

MSMIN= must be less than MSMAX= or the INTRO macro does not execute. If
you change these values at execution time, the value is compared to the current
values, if specified, to see that the rule is not broken. If you specify at assembly
time

MSMAX=90,MSMIN=85
and at execution time

MSMIN=95, MSMAX=99

INTRO will not execute because 95 is greater than 90.

You should specify the operands that provide the trace tables:

CROSSRF=
TRACE=
DTRACE=

You should provide a dead-letter queue (DLQ=) for your network.

Be sure to check the return code after the INTRO macro executes. If it is any-
thing other than zero, the MCP is unlikely to work satisfactorily, and you should
deliberately ABEND in the MCP.

Opening a line group data set causes all lines in the line group to be prepared for
operation. You can defer activation until later by opening the line idle and later
issuing the STARTLINE operator command.

READY Macro

CLOSE Macro

Typical Errors

Open your data sets in the correct order:

First: message queues data sets
Next: checkpoint data set
Last: line group and log data sets

If you open a large number of data sets, you must be conscious of the base
register. You can use the following procedure before your first OPEN macro.

BASE DC A(DCBSTART)
L 2,BASE
USING DCBSTART, 2
OPEN
DROP 2

DCBSTART EQU *
DCB Macros

Check each OPEN to see if it was successful (test DCBOFLAGS at DCB+X‘48’
with a mask of X‘10’), and inform the system console of the result of the test.
This provides immediate information about the status of your network. You will
know if all your data sets were opened, and eliminate useless diagnosing of an
error caused by an unopened data set. A recommended procedure is

OPEN (DISK,(INOUT))

™ DISK+48,X'10"

BO NEXT

WTO 'REUSABLE DISK NOT OPEN'
NEXT OPEN (DCB1050, (INOUT))

™ DCB1050+48,X'10"

BO NEXT1

WTO '1050 DIAL LINE NOT OPEN'

NEXT1....

Remember that “good morning’ and ‘‘restart in progress’ messages pass through
the outgoing message handler, and need an appropriate header.

After READY executes, TCAM is ready for message processing.

The CLOSE macros must follow the READY macro or be branched to from
instructions immediately following READY.

Be sure you close your data sets in the correct order:

First: line group and log data sets
Next: checkpoint data set
Last: message queues data sets

Following is a list of common errors that can be made in coding the activation and
deactivation section of an MCP. It is in the form of questions, with YES/NO
answers, against which you can examine your code.

TCAM Problem Determination Aids 53

Queuing

Main-Storage Queues

Nonreusable Disk Queues

54

OS TCAM User’s Guide

Question Right

1. Do the INTRO, OPEN, and READY macros precede the YES'
message handler sections of the MCP?
2. Do any instructions that you coded before the INTRO NO
macro contain any TCAM macros?
(INTRO expects to be first.
It gets control from BALR 14, 15
with the save area set. It expects to get control from OS.)
3. Did you specify both the KEYLEN= and the UNITSZ= NO
operand for the buffer-unit size?
4. Is MSMIN= less than MSMAX=? YES
5. Did you code FEATURE=(,,TIMER) if you use any of YES
the following functions: checkpoint, any interval,
dial-out options, main-storage queuing, reusable
disk queuing?

6. Did you check the return code after the INTRO macro YES
executes?
7. Are your OPEN macros in the correct order (disk YES

data sets, then checkpoint data set, then line group
and log data sets)?

8. Did you check each OPEN to see if it was successful? YES

9. Before you closed TCAM, were all data sets for YES
application programs closed (for instance, with a special
message)?

10. Does the deactivation section of your MCP end with YES
a RETURN macro?

11. Did you prepare for the return by loading register YES
13 with the save area address?

12. Are your CLOSE macros in the correct order (line YES

groups and log data sets, then checkpoint data set,
then disk data sets)?

If you suspect a problem in queuing, review this section to help you find it. You
should also be familiar with Defining the MCP Data Sets in the TCAM
Programmer’s Guide.

Main-storage-only queuing is the fastest method in response time, but it uses more
main storage than any other method.

For main-storage-only queuing, when you use a distribution list, the multiple
routing and redirect routines place another copy of the header buffer in main

storage for each station in the list.

Avoid main-storage queuing for a log data set if at all possible, as it can use up

Wrong
NO

YES

YES

NO
NO

NO

NO

NO

NO

NO
NO

NO

your main-storage buffer units (MSUNITS) very quickly, especially if the log data

set is not open or going directly to the printer.

Nonreusable disk queuing requirés more space on the disk than reusable queuing.

Nonreusable disk queuning may require periodic system closedown to clean up the
disk queues. If the nonreusable disk queue fills up and the closedown fails be-

Reusable Disk Queues

Queuing by Line

Queuing by Terminal

Other Considerations

cause the message TCAM was receiving was too big to fit in the remaining space
on the disk, TCAM terminates abnormally with a system code of 045.

Reusable disk queuing requires periodic reorganization. Response time during
reorganization may be longer.

Reusable disk queuing can often handle the same amount of message traffic as
nonreusable queuing, while occupying less disk space.

Messages that are unsent and have no alternate destination are lost when the
reusable disk data set is reorganized.

Message queues on reusable disk never run out of space under normal conditions.

You can compromise by specifying main-storage queuing with backup on reusable
disk. This preserves most of the advantages of disk queuing, while achieving a
faster response time than with disk queuing alone.

You limit TCAM’s capability to retrieve messages that have already been sent
when you use reusable disk queuing, because the original copy of a transmitted
message is eventually overlaid by another message.

If you queue by line, you can send messages by priority on a line basis to stations
on a multipoint nonswitched line. All messages of a given priority on the queue
are transmitted before any message of a lower priority, whether or not the higher-
priority messages are destined for two different stations on the line.

If you queue by line, you need less storage than if you queue by terminal. If you
queue by line rather than by terminal, you save at least 65 bytes for each station
after the first on a line, plus about 28 bytes per station after the first for each
priority level specified beyond one.

If you queue by line, you will switch between stations on the line rather than
maintain connection with a station.

You must specify queuing by terminal for switched stations and for buffered
terminals. If you queue switched stations by line, a station that calls in receives
not only its messages, but those for all other stations in the line group as well.

If you queue by terminal, you can send messages by priority on a station-by-
station basis. All messages in a given queue for a station on a line are transmitted
before any messages in other queues for the remaining stations on the line are
transmitted, whether or not the other queues contain messages with priorities
higher than those for the messages being transmitted.

If you queue by terminal, you need more stor;;ge than if you queue by line.

You use more main storage by mixing queue types than by specifying only one
queue type for all terminals.

TCAM Problem Determination Aids 55

Typical Errors

A segment for which the INITIATE macro has been executed is treated as if it
were a completed message having the highest priority on the queue, and is sent
before any other message on the queue is sent. In addition, no message on the
queue is sent until all segments of the message for which INITIATE was executed
have arrived at the queue and been sent to their destination.

Disk queuing ties up disk space and disk channels that could otherwise be used by
other jobs.

Following is a list of common errors that can be made in defining queues. It is in
the form of questions, with YES/NO answers, against which you can examine
your code.

Question Right Wrong

1. Have you specified the type of disk queuing you YES NO
want (the OPTCD= operand on the DCB macro specifies
the type; L is nonreusable and R is reusable)?

2. Did you try to use the HOLD macro with main-storage- NO YES
only queues?

3. Did you try to retrieve messages from main-storage- NO YES
only queues?

4. Did you try to take checkpoints of main-storage- NO YES
only queues? '

5. Did you specify queuing by terminal for switched YES NO
stations or for buffered terminals?

6. If you are using main-storage queuing with disk YES NO

backup, did you define at least two message queues
data sets, one residing in main storage and the other
on reusable or nonreusable disk?

Defining the Message Handlers

Delimiter Macros

Message Format

56

0OS TCAM User’s Guide

If you suspect a problem in a message handler, review this section to help you find
it. You should also be familiar with Designing the Message Handler in the
TCAM Programmer’s Guide.

The STARTMH macro identifies the beginning of a message handler (MH).
You may omit either the incoming or the outgoing group of the message handler.

Remember:

1. INHDR and OUTHDR handle only those message segments that include all or
part of a message header.

2. INBUF and OUTBUF handle a/l message segments.

3. INMSG and OUTMSG execute after the complete message has arrived at the
CPU or been sent.

You can code one and only one INEND and OUTEND macro in an MH.

Depending on the application, messages may consist of a header only, text only, or
header and text. You determine what is header and what is text.

You should design your message format so that each message starts with a specific
character (any character will do). Otherwise, carrier returns, spaces, etc., entered
before the actual message, make it virtually impossible to find the start of data.
You will find that most terminal operators return the carriage several times to
assure themselves that the terminal is turned on and working. If your message
format starts with an X, a sample sequence might be:

INHDR
CODE
SETSCAN C'X'

You have now passed over any miscellaneous characters that may have been put
on the line before your message, and you know exactly where valid data starts.

You should include in your message format an end-of-address (EOA) character to
allow you to route messages to multiple destinations. (This EOA is not to be
confused with the hardware-generated line-control character). This also gives you
another landmark that you can use to separate the actual text of the message from
its header. You must have an end-of-address for multiple routing. Your message
format might be

X origindestldest2dest3 /... text ... EOT
where / is the EOA character.

Scan Pointer
The scan pointer maintained by TCAM points to the current field in the message
header. Since some macros use the pointer to locate the field on which they act,
you must be aware of the scan pointer position when designing your message
handlers. Macro instructions in a message handler should be placed in the same
order within a subgroup as the fields of the header on which they act. The scan
pointer controls access to these fields, processing across the header from left to
right as the various macro instructions are executed.

Note 1: If you code LC=IN in the STARTMH macro and plan to issue
operator commands from remote terminals, you must move the scan pointer to
the first data byte before issuing the CODE macro. Example 1 shows
incorrect code. :

Example 1: The MH is coded
STARTMH LC=IN
INHDR
CODE

CONTROL=0PID is coded in the INTRO macro.

The operator command
OPID V 01C,ONTP

is issued from a 1050 terminal.
The buffer has the following format:

Unit Control | Buffer | (O | OPID V 01C,ONTP ©
Area Prefix

position of scan pointer

The CODE macro determines if the message entered is an
operator command by matching the characters specified on

TCAM Problem Determination Aids 57

the CONTROL= operand with the character string following

the scan pointer. A valid match will not be detected since the

CODE macro compares ® OPI with OPID. To be correct, the
MH should be coded as shown in example 2.

Example 2: STARTMH LC=IN
INHDR
SETSCAN 1
CODE

The buffer will now have the following format.

Unit.Control | Buffer | (D) | OPID V 01C,ONTP ©
Area Prefix

position of scan pointer

Note 2: When a message segment is received for processing in an incoming
group of a message handler, the space reserved for expansion by the
RESERVE= operand of the line group DCB or PCB macro is moved to
the front of the segment and the scan pointer is positioned to the last
reserved byte. '

Example 3: RESERVE=23 specified in the line group DCB for the line that
sent the message.

12 30 23
Unit Control | Buffer Reserve|Data
Area Prefix Bytes

position of scan pointer

If no reserve bytes are specified, the scan pointer points to the last byte of the
buffer prefix.

Example 4: No reserve bytes

12 30
Unit Control | Buffer Data
Area Prefix

position of scan pointer

When a message segment is received for outgoing processing, the scan
pointer is positioned to the last remaining reserve byte, if there are
unused bytes (example 3).

If there are no more unused reserve bytes or none originally specified,
the scan pointer points to the last byte of the buffer prefix (example 4).

The position of the scan pointer after execution of the STARTMH macro
depends on the coding of the LC= operand.

If LC=IN is coded, the scan pointer is positioned to the first

line-control character.

If LC=O0UT is coded, the scan pointer points to the first data text byte.

The following is a list of macros that use the scan pointer.

The scan pointer location is the starting position for macro execution.
Specific uses are indicated for some macros.

58 OS TCAM User's Guide

The position of the scan pointer after macro execution is also shown.

Macro

CODE

DATETIME

ERRORMSG

FORWARD

INITIATE
LOCK

MSGEDIT

MSGTYPE

ORIGIN

PATH

PRIORITY

SCREEN

SEQUENCE

SETEOF

Specific Use

For operator control checking
on the first incoming buffer

To insert error text
after header

If DEST=** or DEST=(number)
is coded

If control characters are used
If control characters are used

If AT=SCAN
If TO=SCAN

If control characters are used

If the priority is in the header
or if control characters are used

If control characters are used

If control characters are used

Position of Scan Pointer

After Macro Execution

Unchanged

Unchanged (points to last
character of inserted data)

End of error text

Last character of
destination

or EOA character if
multiple destinations,
or last character of
character string

See Note 3.

See Note 3.

See Note 4.

See Note 3.

Last character in
character string

See Note 3.

1. Last character of
priority if priority
is in the header with
no character string
or matched character
string

2. Last character of
control characters if
priority is in the
macro

See Note 3.

1. Unchanged if output

2. Last character in
sequence number if
input

See Note 3.

TCAM Problem Determination Aids

59

User Code

60 OS TCAM User’s Guide

SETSCAN 1. Unchanged if
MOVE=RETURN
2. n characters forward
or backward
3. Last character in
character string

UNLOCK . If control characters are used See Note 3.
Note 3:

1. The position of the scan pointer is unchanged if an invalid or no
condition is given. ‘

2. The scan pointer points to the last character in a character string if
a valid condition is given.

1. MSGEDIT functions performed on the buffer contents to the left of
the ‘'scan pointer position before macro entry:
a) possible physical scan pointer movement
b) no logical scan pointer movement

Scan pointer before MSGEDIT
L A4ABBBCCCCCX-----=----- X |
. 4 .
position of scan pointer
MSGEDIT replacés AAA with ZZZZ and removes BBB
Scan pointer after MSGEDIT
LZZZZCCCCCX--=--=-~--- X |
position of tscan pointer

2. When MSGEDIT functions are performed on buffer contents to the
right of the scan pointer position before macro entry, there is no
physical/logical scan pointer movement.

Be aware of multiple-buffer header processing across buffers (see Figure
19). Try to limit your header to one buffer.

You can vary the path of a message through an MH dynamically using the PATH
or MSGTYPE macro. The PATH macro controls the routing of a message among
subgroups. The MSGTYPE macro controls the path of a message within a
subgroup.

When you use a character string to control macro execution, do not have partially
identical strings, such as:

MSGTYPE ABC
MSGTYPE AB

You should cancel all messages. that are in error due to inheader processing and
validity checking. ‘

You can include either open or closed subroutines in your message handler.
Avoid system macros that issue an SVC, unless you are fully aware of the implica-

tions of using such macros in a TCAM system. This is especially true if the macro
has an implied WAIT state in its execution.

gtf:::c;eind g?f:::fNB?:ffer Will Cross Will Not Conditional
Macros Contents Buffers Cross Buffers {(Note 1)
CHECKPT X
CODE (Note 2)
COUNTER X
DATETIME X
FORWARD (Note 3) | DEST in message
INITIATE x
LOCK X
LOCOPT X
LOG X
MSGEDIT X
MSGFORM X
MSGLIMIT X
MSGTYPE ‘ X
ORIGIN (Note 4)
PATH X
PRIORITY (Note 5)
SCREEN X
SEQUENICE Z::‘y"” ::;;'
SETEOF) X
SETSCAN chars integer

POINT=BACK

chars, RETURN=
TERRSET X
UNLOCK X

Note 1: Will cross if conchars is not specified, or if entire character
string is in a subsequent buffer,

Note 2: Except that an operator command must be complete in a single
buffer.

Note 3: ‘Will cross if destination is in the macro or.an option field and
the macro is executed for the first buffer.

Note 4: Will cross but origin may not be known on dial lines for first
buffer.

Note 5: Will cross if conchars not specified and priority level is in
macro.

Figure 19. Multiple-Buffer Header Processing Across Buffers

TCAM Problem Determination Aids

61

Typical Errors

Functional Macros

62

OS TCAM User's Guide

You can include TCAM macros in an open subroutine; you cannot include them in
a closed subroutine.

When your MH handles messages with multiple-buffer headers, any code within
the inheader and outheader subgroup should test register 15 for a negative return
code before executing any open subroutines or before branching to a closed
subroutine if the routine to be executed depends on certain data being in the
buffer or on the location of the scan pointer.

Following is a list of common user code errors. It is in the form of questions, with
YES/NO answers, against which you can examine your code.

Question Right Wrong

1. If you included a subroutine is it serially reusable? YES NO

2. Did you include executable code with an inmessage or NO YES
outmessage subgroup or between such subgroups?

3. Did you do anything that relinquishes control in a NO YES
subroutine?

4. Did you include TCAM macros in a closed subroutine? NO YES

5. Did you supply your own linkages and save and restore YES NO
registers in a closed subroutine?

6. Did you branch from one MH to another? NO YES

7. If you have code in an inheader or an outheader YES NO

subgroup that may handle multiple-buffer headers, did
you code USEREG = operand in the INTRO macro?

8. If register 13 is used in an open subroutine, did YES NO
you save and restore its original contents?
9. In an open subroutine, did you alter the base register? NO YES

If you plan to test the return codes from TCAM macros, see Figure 20. A bad
test, such as testing the return code in register 15 when it is in another register,
can cause incorrect processing of a message.

You must include the CODE macro if you plan to enter operator commands from
terminals or application programs.

If you code LC=OUT on the STARTMH macro, issue CODE as the first function-
al macro in the inheader subgroup for a line on which operator commands may be
entered.

Your error message should contain some indication as to whether the error
occurred in the incoming or outgoing group.

Remember that the maximum length of an error message created by MSGGEN is
24 bytes. :

When you generate messages for BSC and 2260 Local terminals, be sure to
include the STX in the error message.

Use the ERRORMSG and MSGGEN macros to keep the terminal operator aware
of the status of his messages (were they canceled? rerouted? why?).

Make your error messages meaningful.

TN

The table below lists those TCAM macros whose return codes may
be checked by user code in a Message Handler. The return code
occupies the low-order byte in the register indicated; the rest of
the register normally contains all zeros. Return codes of X'FC'
are negative return codes; the high~order three bytes of the
register confain binary ones. Some macros also return an address
in a register; the locations and nature of such addresses are also
indicated in the following table of MH macro return codes.

Return
Macro Register Code Meaning
COUNTER 15 X'00' Good return
15 X'FF' Option field not found
DATETIME 15 X'00' Good return
15 X'04" Insufficient reserve characters
FORWARD 15 X'00* Good return
15 X'04' Invalid destination
LOCK 15 X'00' Good return
15 X'04! Destination not specified
15 X'08! Destination not a process entry
LOCOPT
a) if retum 15 Address Good return
requested in of option
R15 field.
15 X'00' Option field not found
b) if return 15 X'00'
requested USEREG Address
in user~ of option Good return
specified field.
register 15 X'04'
(USEREG) USEREG Unchanged Option field not found
LOG 15 X'00' Good return
15 X'04' DCB or LOGTYPE entry named
in macro not found
MSGEDIT 15 X'00' Good return
15 X'04! No units available
MSGLIMIT 15 X'o0* Good return
15 X'04! Option field not found
ORIGIN 15 X'00* Good return
15 X'04! Invalid origin
SCREEN 15 X'00' Function not done
15 Function Good return
byte

Figure 20. MH Return Codes (Part | of 2)

TCAM Problem Determination Aids

63

SEQUENCE

a) macro 15 X'00* Good return
issued in 15 X'04' Sequence number in message
inheader high
subgroup 15 X'o8' Sequence number in message
low
15 x'oC’ Originating station unknown
b) macro 15 X'00' Good return
issued in 15 X'04' Insufficient reserve characters
outheader
subgroup
SETSCAN
al)locate 15 Address Good return
specified of last
character character
string in string
and return 15 X'00' Specified character string not
address in found in this buffer
R15
15 X'FC' Scan pointer beyond end of
buffer
a 2) locate 15 X'00' Good return
specified USEREG Address
character of last
string character
and return in string
address in 15 X'04' Specified character string not
user= USEREG Unchanged found in this buffer
specified
register
(USEREG)
15 X'FC' Scan pointer beyond end of

USEREG Unchanged buffer

b 1) skip 15 Address Good return

n characters or character

and return skipped to

address in X'00'

R15 15 n greater than the number of
characters remaining in this
buffer

b 2) skip 15 X'00'

n characters USEREG ~ Address

and return of character Good return

address in skipped to

user-

specified 15 X'04' n greater than the number of

register USEREG ~ Unchanged characters remaining in this

(USEREG) buffer

c) skip 15 X'00' Good return

n characters 15 X'04' n greater than the number of

backward characters preceding the scan

pointer in this buffer

d) Locate. 15 Address Good return

scan pointer of scan

address pointer

' 15 X'FC Scan pointer beyond end of
buffer

Figure 20. MH Return Codes (Part 2 of 2)

64 OS TCAM User’s Guide

If some hardware problem causes an error (bits are on in the last byte of the
message error record), send the error message to some other terminal, not to the
terminal in error.

Be careful when coding the FORWARD macro, since it is valid with no operands.
If you code FORWARD PUT, no error is flagged in the assembly, since there is
no keyword. TCAM sees PUT as a comment, and you get the default of
DEST=**.

If you execute the HOLD macro in the outmessage subgroup for a LOCK re-
sponse, the LOCK is not broken, the terminal is not held, and the message is
retransmitted immediately. This can cause an infinite loop if the condition for the
HOLD is permanent and the line or terminal is inoperative.

LOCK does not execute if the station that entered the message being handled is a
buffered station.

Use MSGEDIT to insert idle characters at the end of messages and new lines for
terminals such as the 2740 and 1050 that can write while the type element is
returning to a new line.

When you code multiple groups of operands, rather than multiple MSGEDIT
macros each with a single group of operands, data inserted in one operation is not
considered to be part of the message segment when another operation is per-
formed. The following summary of the MSGEDIT macro and examples are
included in this section of the OS TCAM User’s Guide as an additional aid for
helping you to understand the MSGEDIT macro. In order to use the MSGEDIT
macro in your program it will be necessary to refer to the OS TCAM
Programmer’s Guide and Reference Manual.

Summary:

1. The MSGEDIT macro allows a maximum of 31 groups of functions.

2. Multiple MSGEDIT macros versus multiple function groups in one MSGED-
IT macro is a tradeoff between speed and flexibility.

3. Group execution is independent of coding position of the MSGEDIT macro
but is dependent on buffer contents.

4. All groups work on the original message contents, which means that inserted
characters from one function cannot be the search argument for another
group.

5. However, inserted characters from MSGEDIT macro can be the search
argument for a subsequent MSGEDIT macro.

6. Data moved is all that data from the first AT= position to buffer end.

7. MSGEDIT does not require reserved space, but allocates units automatically,
if additional space is needed.

8. MSGEDIT reallocates units automatically if remove functions empty units.

9. Execution of MSGEDIT in the inheader/outheader subgroups acts only on
one - header-buffer.

10. Execution of the MSGEDIT in the INBUF/OUTBUF acts on each buffer.

11. Execution of MSGEDIT across buffers is not possible.

12. The maximum length of a contiguous character string is eight which is the size
of the AVT work area.

The following MSGEDIT examples use a keylength of 60 and a buffer size of 120.

TCAM Problem Determination Aids 65

MSGEDIT-examples

Example 1: insert char. ofter special char. string

before

* after

before

after

Example 2:

before

after

before

after

before

after

INHDR

MSGEDIT ((1,CL3'RAL', CL3'NYC'))

MSGEDIT-examples

before

after

unit prefix header prefix data
NYC
12—l 3 U 27 >
data
NYC|RAL 24 >
unit prefix data nondata
‘*_lz_ﬂ*é ¢ 54
data nondata
t— 99— 51
insert chars, after offset
OUTBUF
MSGEDIT ((l,(C'0',5),95))
unit prefix text prefix data
12— g———————23 < 37 L
data
l——————37 !
unit prefix data
12 L 60 >
// data
-¢ 58 —p=1 00
allocated
by MSGEDIT
\ N J unit prefix
T le—12—»
nondata
000 55 —P>
2 data characters
Example 3: insert ofter scan—pointer position
QUTHDR scan-pointer
MSGEDIT ((1,CL3'1I1, SCAN)) ¢ nondata
unit prefix header prefix data data
—12 Pt 30 20 > 5-prtip-
data data
——————20 R 11 |5 \
nondata

66

OS TCAM User’s Guide

Example 4: remove characters between AT= and TO character strings

INHDR
MSGEDIT ((R, CONTRACT,SCAN,(10)))

scan pointer

unit prefix header prefix data —, data
R
before le—12 > 30 - 20— [9— P
,/ data R nondata
ZO—P' 9
after MSGEDIT
deallocates
unit |
\\ unit prefix 1 nondata
~ _'
before l———1 22— |g 59 o
nondata
after 60 >
MSGED IT-examples
Example 5: Remove characters, including AT string
INHDR
MSGEDIT ((RA, CONTRACT, CL3'NYC’,CL3'805))
unit prefix header prefix data nondata
before —12 fg——————30 NYC‘-C—")——P 805 [—— 14—
nondata
after BOS | 27. [
Example 6: Remove characters, including TO string
INHDR
MSGEDIT ((RT, CONTRACT, CL3'NYC', CL3'B05"))
unit prefix heoder prefix data nondata
before <_ —12 [] 30 P NYC <__]0__> BOS "——14—_»
Lol B
nondata
after NY_C < 27. .
Example 7: Replace character string including AT/TO strings
INHDR
MSGEDIT ((RAT,CL3'RAL', CL3'NYC', CL3'B05'))
unit prefix header prefix data nondata
before < 12 >l 30 NYC —— 0——P» 805 [———14 —————P
nondata
after RAL f————————27 >
67

TCAM Problem Determination Aids

68

MSGEDIT-examples

Example 8: insert record delimiter characters

before

after

Example 9: multifunctions

before

after

before

after

OS TCAM User’s Guide

OUTBUF
MSGEDIT ((RA,DELIMIT,CL1'D")) (PROCESS....,RECDEL=X'FF')
unit prefix header prefix data data
l—12—pi————— 30 > t—15 -0 14—
data data
e———15 | | —— 14—
X'FF!
INHDR
MSGEDIT ((1, (A,5),RAL), RAT, CONTRACT,CL3'NYC’, CL3'B05'))
unit prefix header prefix data data data data
g—12 S 30 >l 5] NYC @59 505 | gipe{ FAL | g—7—p
data | data data data
5-ptagip RAL[AMAMLG 7 plg59{R
unit prefix data data nondata
12—l 5>t Le—10] 42 .
data nondata
AUAAAAA LG 10) 43 >

Typical Errors

For security in your system, use an ORIGIN macro as early as possible in your

inheader subgroup to verify that only authorized users enter data in your system.

When you code a macro that has the operand BLANK = and specify

BLANK=YES to say that blanks are to be ignored, be sure that the field you are

trying to match does not have a blank defined in it. For instance, if you define a

character string AB as CL3‘AB’, the field is automatically padded to the right with
a blank, and a matching field can never be found if you code BLANK=YES.

Begin with a simple message handler, and add functions one step at a time.

Be sure to code macros in the right subgroup.

Following is a list of common errors that can be made in coding message handlers.
It is in the form of questions, with YES/NO answers, against which you can
examine your code. Following this checklist is Figure 21, MH Functional Macros
by Subgroup.

Question

1. If the MH is to handle incoming messages, did you
code the INHDR, INEND, OUTEND delimiter macros?

2. If MH is to handle outgoing messages, did you
code OUTEND?

3. Does the incoming group precede the outgoing group
if you have included both in your MH?

4. If you coded an incoming group, did you include an
INHDR macro first?

5. Are inmessage and outmessage the last subgroups
in the incoming and outgoing groups,
respectively?

6. If you provide a field or work area, such as for
MSGGEN, ERRORMSG, or MSGEDIT, is the field
addressable by the MH (is it after the OUTEND macro)?

7. If you have more than one MH and your code includes
literals, did you code a LTORG instruction after the
last delimiter (OUTEND) of each MH?

8. Is STARTMH the first instruction in every MH?

9. Did you try to execute more than one inmessage or
outmessage subgroup for any message?

10. Is CANCELMG the first macro after INMSG in the
inmessage subgroup if you use this macro?

11. Is the CANCELMG macro in the inmessage subgroup
only?

12. Did you try to execute more than one CANCELMG
macro for a message?

13. If you plan to process headers, is the CODE macro the
first macro in the inheader subgroup?

14. Did you process a macro like DATETIME on an input
segment before you issued the CODE macro or on an

" output segment after you issued CODE?
15. If you have CODE in the incoming group of the

message handler for an application program, did you

Right

YES

YES

YES

YES

YES

YES

YES

YES

NO

YES

YES

NO

YES

NO

YES

Wrong

NO

NO

NO

NO

NO

NO

NO

NO

YES

NO

NO

YES

NO

YES

NO

TCAM Problem Determination Aids

69

specify the operand NONE so that there is no

translation?

16. Did you issue the CODE macro more than once in an NO YES
incoming or outgoing group for a segment?

17. If you coded LC=IN in the STARTMH macro and YES NO

plan to issue operator commands from remote terminals,
did you move the scan pointer to the first date byte
before issuing the CODE macro?

18. Did you issue the CUTOFF macro more than once in NO YES
the inbuffer subgroup?
19. Did you provide line-control characters at the end YES NO

of error messages you created with the ERRORMSG and
MSGGEN macros?

20. Did you use the MSGEDIT macro to remove the YES NO
EOT from messages destined for a 2741 terminal?
21. If you omitted the BLOCK= operand on the YES NO

MSGFORM macro, did you code NTBLKSZ= or
TBLKSZ= on the TERMINAL macro for the
. destination station?
22. Did you issue ORIGIN in the MH for a switched YES NO

station to identify the station to TCAM?
23. Did you issue ORIGIN after the CODE macro? YES NO
24. Did you try to redirect to a distribution list? NO YES

Operating and Procedural Considerations

70

0OS TCAM User’s Guide

This section suggests operation and procedural (JCL) techniques for running a
TCAM system.

If your MCP is large, you should, when assembling it, either specify a SPACE=
parameter on your SYSPRINT DD statement, since the SYSGEN default for
SYSOUT=A may not be large enough, or, preferably, directly allocate the output
devices, as in

//SYSPRINT DD UNIT=00E
//SYSPUNCH DD UNIT=00D

Otherwise, you may lose your assembly due to lack of space (abnormal comple-
tion code of B37).

Obtain an object deck from the assembly run and link it into a JOB library. You
can then bring up your TCAM system with a procedure that executes your MCP.
This is more efficient than running a link-and-go procedure.

Dump SYS1.LOGREC every day as part of your regular cleanup procedure.
Otherwise, if it gets full, it can impact your system so that you might not be able
to execute your MCP. Also, if you let it fill up, dumping it is very time-
consuming. If you do not want the output (because you have had no trouble with
any of your lines or terminals), code DUMMY in the EREPPT DD statement of
the IFCEREPO utility program.

To save main storage after your application programs are fully tested, attach them
(with ATTACH macros) in the MCP. Run them as separate jobs until tested,
however, because if you do not, you will not get a dump of the programs.

SUBGROUP MACROS
INHEADER CHECKPT MSGEDIT
(INHDR) CODE MSGLIMIT
COUNTER MSGTYPE
DATETIME ORIGIN
FORWARD PATH
INITIATE PRIORITY
LOCK SEQUENCE
LOCOPT SETSCAN
LOG TERRSET
UNLOCK
INBUFFER CHECKPT LOCOPT
(INBUF) CODE LOG
COUNTER MSGEDIT
CUTOFF PATH
TERRSET
INMESSAGE CANCELMG HOLD
(INMSG) CHECKPT LOG
ERRORMSG MSGGEN
REDIRECT
OUTHEADER CHECKPT MSGLIMIT
(OUTHDR) CODE MSGTYPE
COUNTER PATH
DATETIME SCREEN
LOCOPT SEQUENCE
LOG SETEOF
MSGEDIT SETSCAN
MSGFORM TERRSET
OUTBUFFER CHECKPT LOG
(OUTBUF) CODE MSGEDIT
COUNTER PATH
LOCOPT TERRSET
OUTMESSAGE CHECKPT LOG
(OUTMSG) ERRORMSG MSGGEN
HOLD REDIRECT

Figure 21. MH Functional Macros by Subgroup

As a precautionary measure, scratch all “‘scratch’ data sets before you bring up a

system.

If you routinely send all output to SYSOUT=A, use a SPACE= parameter to be
sure that the task providing a diagnostic aid or a dump does not run out of space.

To stop a line if you have not yet responded to the message SPECIFY TCAM

PARAMETERS, use the OS command

TCAM Problem Determination Aids

Typical Errors

Terminal User Errors

72

0OS TCAM User’s Guide

V lineaddress,OFFLINE

You may list multiple line addresses by enclosing them in parentheses. After you
have responded to the message, TCAM is in the system and you should use the
TCAM operator command

V lineaddress,OFFTP, [Cor I]

You must issue this command for each line you wish to stop.

If, when you open a line, you get the message IED0791 ENDING STATUS NOT
RECEIVED addr-LINE UNAVAILABLE, do not issue a STOPLINE operator
command on the line until you have issued a STARTLINE command.

Be careful when closing TCAM. If you issue the command
Z TP, FLUSH

TCAM tries to send any outgoing messages that are queued for a station, unless
the station is intercepted. If a terminal in your network is not intercepted, but is
down because of hardware trouble, you will never close down because TCAM
continually tries to flush the message queue of all messages. FLUSH is the default
if you specify only

Z TP
Question Right Wrong
1. Does the time period for CPU processing that you YES NO

defined at system generation cover the entire time
you plan to run continuously (coding TIME=1440
on the EXEC statement gives you unlimited time)?
2. Since the DEBUG, GOTRACE, and NOTRACE YES NO
operator commands do not allow multiple operands,
did you issue a command for each diagnostic aid you
want loaded and for each line for which you want the
line 1/0 interrupt trace either started or stopped?
3. For a line with hardware trouble, did you issue a NO YES
STOPLINE operator command? (If operator control
cannot successfully stop the line you lose operator
control. If the command was entered from a remote
terminal, you also lose its line, since it waits for
the response to the command. Operator control is not
reentrant, therefore, no other operator control
commands will be accepted until this request is honored.
Because of the hardware trouble, operator control
cannot successfully stop the line.)

When you are assessing the situation after you discover an error, consider the
areas where a terminal user is involved as possible sources of error. Three of these
areas are

1. bad input,
2. wasted processing time, and
3. impacting the TCAM system.

In a simple message-switching environment, the terminal user is not responsible
for errors. You should detect any bad data entered by the terminal in your MCP

Typical Errors

and cancel the message. MCP validity checking and canceling prevents bad
messages from cluttering up your system and impacting processing time. Invalid
data in the text is evident at the receiving terminal; its invalidity does not impact
the TCAM system. However, in a data-collection environment, bad text data
entered by the terminal user can cause bad output to be produced, as in reports
and monthly statements.

A careless terminal user can make TCAM perform unnecessary functions, thereby
wasting processing time. Every message that a terminal enters, valid or invalid,
passes through the message handler. To reduce processing time by reducing the
number of invalid messages, the terminal user should know:

« the expected format of an input message;

« the correct spelling of all valid destination terminal names; and

« the type of translation table used by his terminal—is the table ‘“‘folded” to
allow both uppercase and lowercase letters to be accepted as valid?

o The terminal user should be cautioned about inserting an EOB (depressing
EOB key) within the header since these EOBs will impact header processing.
EOBs are not removed when LC=0UT is specified on the STARTMH macro.

Furthermore, a terminal user at a secondary operator control terminal may
unknowingly create a great deal of trouble, since he can reconfigure parts of the
TCAM network without anyone knowing. If your system suddenly fails to
operate properly for no apparent reason, first look at the terminal sheets from all
secondary terminals to see if someone issued an operator command that impacted
system operation.

The major terminal user error in entering an operator command from a secondary
terminal is failure to follow the command with a blank. Each command must be
followed by one or more blanks before the EOT; otherwise, the command is
invalid. A command from SYSCON may be no longer than 126 characters.

A terminal user should do certain things to keep the system clean and running.
First, he should keep track of his input sequence numbers to avoid wasting
processing time if they are invalid. The input sequence number is at most four
bytes long and must be followed with a blank. Leading zeros can be omitted.
Second, he should examine the output sequence numbers to be sure no number is
skipped, indicating a lost message. If a number is skipped, he should realize that
there may be trouble on his line or terminal. Third, he should end all his messages
with a carrier return, so that the carrier of the receiving terminal is positioned at
the beginning of the next line for the next message. Otherwise, the carrier of the
receiving terminal may be at the end of the line when it starts receiving the next
message, and the message contents are lost since the message is overtyped.
Another technique is to have a carrier return as the first character in a message.

Question . Right Wrong

1. Is the input message format correct? YES NO

2. Did the operator enter the message in the wrong NO YES
shift?

3. Did the operator follow an operator command YES NO
with a blank?

4. Are EOBs embedded in the header data? NO YES

TCAM Problem Determination Aids 73

Other Possible Areas of Error

74 OS TCAM User's Guide

You should consider several possible sources of error that are outside TCAM.
Following is a list of the more common sources.

1. Control program error. You could have an error in your operating system or in
the interface between TCAM and the system.

2. Application program error. For example, an error in the COBOL compiler.

3. Central hardware error. A failure, for instance, in a 2314.

4. Remote hardware error. A failure, for instance, in a 1050 terminal in another
city.

5. Communications line error.

Once you pinpoint the general area of error, you are well on your way to deter-
mining the actual problem and how it can be corrected.

TCAM Diagnostic Aids

This chapter tells you what information TCAM provides for your use in diagnos-
ing problems, and how you can get copies of the information. The first section,
Gathering and Interpreting Data from Dumps, covers the TCAM program and
all the data sets that you can dump and print. This first section also suggests the
kinds of errors that you can find, where to look for them, and, in some cases, what
normal operations look like. The second section, Using Operator Commands,
summarizes operator commands that you can issue to determine and alter the
status of your TCAM system while it is running. The last section, Normal End-
of-Day Closedown, suggests what data you might want to copy after your normal
end-of-day closedown.

Gathering and Interpreting Data from Dumps

Main-Storage Dumps

TCAM Formatted Dump

This section tells you how to obtain main-storage and secondary-storage dumps.
Included with each category of dumps is a detailed explanation of how to interpret
the information. The last part of this section refers to console and terminal
listings that you may need when you debug.

Several types of dumps are available to you. The first, and perhaps the most
common, is the formatted dump provided by the system ABEND routines. All
you need to get this dump is the proper JCL as discussed below.

However, you must be aware that eventually you will probably need a stand-alone
dump, and you must plan for this need. For instance, when a program check
occurs, you may lose data when the ABEND routines gain control of the system.
Ways to obtain stand-alone dumps are also discussed.

The job you use to bring up TCAM should include a SYSUDUMP or SYSABEND
DD statement in the JCL for the step that executes the message control program.
Examples are

//SYSUDUMP DD SYSOUT=A and
//SYSABEND DD SYSOUT=A

This ensures that you have a data set for a dump if TCAM abnormally ends or if
you cancel TCAM with a dump for debugging. The SYSUDUMP is of the pro-
gram region only; the SYSABEND dump includes the OS nucleus.

A SYSABEND dump may be too large for the default space of SYSOUT=A, thus
you may need a SPACE= parameter.

If you include either of the DD statements described, you can terminate TCAM
normally (Z TP) and get no dump, or terminate it abnormally (C tcamjob,DUMP)
and get a dump identical to the one the OS ABEND routine would produce.

Because TCAM occupies a large region and dumping main storage may take a
long time, you may wish to put your dump on tape and print it at a later time or on
another machine, so that TCAM can restart as soon as possible. See the publica-
tion, Service Aids, to learn how to transfer SYS1.DUMP, the ABEND data set, to
tape.

TCAM Diaghostic Aids 75

76

0OS TCAM User’s Guide

Example:

//TRNSDUMP JOB MSGLEVEL=(1,1) (
//% TO PUT SYS1.DUMP ON TO TAPE

// EXEC PGM=IMDPRDMP
//SYSPRINT DD SYSOUT=A
//PRINTER DD SYSOUT=A
//TAPE DD DSNAME=SYS1.DUMP,DISP=0OLD
//SYSUT2 DD UNIT=2400,VOL=SER=DUMP,LABEL=(,NL),*
// DISP=NEW
//SYSIN DD *
END
/*

A TCAM dump contains a great deal of information, only part of which you can
use for any particular problem. The information you use varies according to the
nature of the problem, and may be different for each problem. You must decide
what to look for. Therefore, you should examine the coding of your message
control program (MCP) and determine as much of the problem as possible before
looking at the dump. You must know what events led up to the problem and the
general nature of the problem; if you do not, you will be hopelessly lost in the
dump.

This section shows some of the major items in a TCAM formatted dump, as well
as possible starting points in TCAM debugging. For a complete description of the
fields in a TCAM formatted dump, see Appendix C. Formatted TCAM Dump.
For a description of the fields in an OS formatted dump, see the Guide to Read-
ing Dumps.

Reading the Dump: A formatted TCAM dump is produced as part of the OS
formatted dump when TCAM resides in the system. The TCAM part of an MFT
dump starts after the trace-table entries; the TCAM part of an MVT dump starts
after the save area trace. The following 14 parts of Figure 22 illustrate the items
of a TCAM dump.

The first item printed in the TCAM dump is
TCAM ADDRESS VECTOR TABLE hhhhhh

where hhhhhh is the starting address, in hexadecimal format, of the TCAM
address vector table (AVT). The AVT is the major control block of the TCAM
system, and begins eight bytes beyond the start of the INTRO macro.

Next are five save areas, with their offsets from the start of the AVT printed in
the left-most column of the dump. The save areas are shown in Figure 22 Part 1.

Table Pointers: The table pointers (Figure 22, Part 2), with their offsets from the
start of the AVT printed in the left-most column of the dump, include:

1st word (at offset X‘148’) —last three bytes is a pointer to (address of)
the device characteristics table

11th word (at offset X‘170") —last three bytes is pointer to the TCAM
MCPtask control block (TCB)

12th word (at offset X‘174") —last three bytes is a pointer to the TCAM
: line I/0O interrupt trace table if you includ-
ed this table in your system.

TCAM ACDRESS VECTOR TABLE (29970

SAVE AREA 1 USER REGISTERS

0000 0C0COCOC CO00777BC 0C0399B8 5003A6C4 00068BCC 0000C0C0 00039988 40039EA4
€020 5€0198C8 €00158C8 CO0157AC 0001962C 0001586C 00019880 €0019888 (00019808
0040 0C0COCCC 4007ECSBA

SAVE AREA 2 DISPATCHER

0048 BG04C384 0000016C BCO3F2CC 00068BCO 0004233A 00C395B8
0060 80C6BLEA 00042902 0CO6D8B18 02069280 C006B8B0O E406E660 1203B35C 00C00C04
0080 8CCCOCCC 0003A9B8 000688BCO 00038370

SAVE AREA 3 |ST SUBROUTINE CALLED BY DISPATCHER

0050 4003DA88 00067BCA 8303AD58 FF047622
00A0 00C00000 40046620 0CO7DA70 00039ACS8 00060818 03069280 0006DB40 E406E660
0o0Co 12039510 C0000004 €C039570 00000001 0000006A 00047288

SAVE AREA 4 2ND SUBROUTINE CALLED BY DISPATCHER

[oJo]o}:) 00000001 ©0000000
00EO 0CO3ASE8 €00684CC 0CO3E8BB 00000000 00039AC8 000692A0 C00692A0 E0069280
0100 0C000027 0206DBEO0 1S03D2EC 0003AEEC 00000025 0103A9B8 00000054 00068428

DISABLED SAVE AREA USED BY SVC 102 AND APPENDAGES

0120 0000C17C 00002BDC CCQ6AQFB 1B01é6B1l4 EF03A98C 00001000 00000018 000014A0
0140 0€0C0S38 00000000

Figure 22. A Formatted ABEND Dump Printout (Part 1 of 14)

DEVICE

CHARACTERISTICS
TABLE POINTERS TABLE ADDRESS
0148 0q03E248) 5000084C 80065884 0003B1FB 02A800A0 0006AB20
0160 D6D7C9C4 40404040 4C404040 40404040 0qo019018] 00069370]

ADDRESS OF ADDRESS OF

MCP's TCB TCAM LINE 170
INTERRUPT
TRACE TABLE

Figure 22. A Formatted ABEND Dump Printout (Part 2 of 14)

Dispatcher Ready Queues: Following the table pointers are the dispatcher ready queues.
These are shown with their offsets in the left-most column of Figure 22, part 3. They include:

1st word (at offset X‘178’) —pointer to the enabled ready queue (first
element to be dispatched)

12th word (at offset X‘1A4’) —pointer to the TCAM dispatcher subtask
trace table if you included this table in your
system.
13th word (at offset X‘1A8’) —pointer to the terminal name table.
ADDRESS OF
ENABLED
DISPATCHER REACY QUEUES READY QUEUE
0178 oda3scac]oocoocoo
9180 OCC6ACCS 00077348 0C048A60 D2273054 CO1CD227 DO1C3054 2800282C 00039970
01A0 0203948 €(06B8B0] 0CP3CDCO| 00034698 00066CAA 00039088 00039CC4 00039CC4
01co 000777F8 140000C8| 0€04839C
ADDRESS OF ADDRESS OF
TCAM DISPATCHER TERMNAME
SUBTASK TRACE TABLE
TABLE

Figure 22. A Formatted ABEND Dump Printout (Part 3 of 14)

TCAM Diagnostic Aids 77

78

OS TCAM User's Guide

TCB Pointers: Next are the TCB pointers to four TCAM TCBs, with their offsets
in the left-most column. See Figure 22, Part 4.

ECBs: Figure 22, Part 5 contains the addresses of some internal routines and
event control blocks (ECBs); their offsets from the start of the AVT are printed
in the left-most column of the dump.

The first four words are ECB pointers; the remainder are pointers to TCAM
internal routines and subtasks. The tenth word (at offset X‘200’) is a pointer to
the cross-reference table if you included this table in your system.

Special Elements: Figure 22, Part 6 contains, at an offset of X‘2D(®’ (5th word of
the last line), the address of the current buffer. At an offset of X‘2D8’ is the
address of the VCON table. Offsets from the start of the AVT are printed in the
left-most column.

QCB Pointers: A list of queue control block (QCB) pointers, with offsets in the
left-most column is shown in Figure 22, Part 7. At an offset of X‘384” is the
address of the start of the buffer-unit pool. The third word on the last line (at
offset X‘388’) contains the number of buffer units being used by main-storage
queues.

Interface: Figure 22, Part 8 contains parameter lists, interface work areas, and
constants; offsets are printed in the left-most column of the dump. The third
word of the last line (at offset X‘408’) contains, in the first two bytes, the key
length of the message queues, and, in the last two bytes, the number of lines
opened. At an offset of X‘410’, the first two bytes are the number of free units in
the buffer-unit pool.

OPERATOR

CONTROL ON-LINE FE COMMON

CHECKPOINT TCB TEST TCB WRITE TCB
TCB POINTERS TCB ADDRESS ADDRESS ADDRESS ADDRESS
aicc 00016650 00017058 00019218 00019CC8

Figure 22. A Formatted ABEND Dump Printout (Part 4 of 14)

ADDRESS OF
CROSS -REFERENCE
) TABLE

ecd’s
010C 00000C00
01€0 ©€00000C| 00000000 00000000 80019850 0C03ATES 0003CFCC 00042A0E 00000000
9200 0d077688] 00019828 000422B8 000422A8 QAO4LFFE 00041008 00042612 00047C78
0220 00041C28 00068BCO 0CO68E3A 00067B5A 00063F32 COO4DLES 00077868 QCO3ESLA
0240 ©C065490 60000000 0CO00000

Figure 22. A Formatted ABEND Dump Printout (Part 5 of 14)

SPECIAL ELEMENTS

024C 00000000 0000000C 00000000 00000000 00000CO0

0260 000000C0 00000000 00000510 47F01266 00000000 00000000 00000000 00000C00

0280 0C068€£60 000000CO 0C042048 20039CDO FO00000C 00039COC 00039C94 70039CSC

02A0 EC039C2C 7C039C94 8C02012C 62550800 00000802 00041F84 08039C5C 00039AEO

92C0 0€039CZC 40039CAC ECG39C2C 000OFFFF E406EE6C] 00000000 80j03E280)
ADDRESS OF ADDRESS OF
CURRENT VCON TABLE
BUFFER

Figure 22. A Formatted ABEND Dump Printout (Part 6 of 14)

Core Queue: Figure 22, Part 9 shows this section, with offsets from the start of
the AVT printed in the left-most column. See Appendix C for a description of
each field.

Disk: This section contains the queue and control information for the disk
message queues. Figure 22, Part 10 shows this information, with the offsets into
the AVT printed in the left-most column.

At an offset of X‘46C’ is the address of the CPB free pool. The first word of the
fourth line (at offset X‘480’) is a pointer to the reusable disk data extent block
(DEB). The seventh word of the fourth line (at offset X‘498’) is a pointer to the
nonreusable disk DEB.

Termname Table: TNT 03CDCO is the address, in hexadecimal format, of the
TCAM terminal name table, which contains the names and addresses of all the
terminal-table entries. Figure 22, Part 11 illustrates this section. See Appendix C
for a description of each entry.

QCB PGINTERS

020¢C . 0C000C00
02E0 00068418 €000000C 0C0445F8 00039C5C F0039C2C 00041D68 000074E6 E1720100
0300 0C039CEC COC39C5C 0C039COC 0806DACO 00000000 00042338 02039C2C 0000000C
0320 0€0424F6 C2039C2C 8CG16C20 00039C94 02039C2C 80019658 00039CA0 02C39C2C
0340 8001SE30 00039CAC 02039C2C 00000000 00042900 €2039CC4 COO000CO 00043408
0360 02039CCO €0000000 00041F98 02039C2C 00000000 0003FFBO 02039CE8 00039C2C
9380 0CC40526 C06DACC][0C000007] 00000000
ADDRESS OF NUMBER OF BUFFER
START OF UNITS USED BY
BUFFER-UNIT MAIN - STORAGE
POOL QUEUES
Figure 22. A Formatted ABEND Dump Printout (Part 7 of 14)
INTERFACE
2350 0004233C 0004DB88 B80019AF8 808C0COC
0340 OCO4EFSE8 E001SAF8 FFC4D9E4 FFO48B6E FFO4E654 0000C00G 00000000 000C0CCO0
03C0 €C000C0C 000000C0 CCOOCO00 00COCCOO €00C000C 0000000C 00000000 00GOOCCC
03E0 ©CCCCCCC CCON0OCO 0CO0C000 00000GO0 00000000 0000013C 00039AC8 20G00C02
04C0 00030CC4 CC070010 |CC54C9C6|20000000 [C170P0C6 C0000019 O07FB291C 0BO0OCOO
NUMBER OF FREE
SIZE OF NUMBER OF NI oot FFER=
BUFFER UNIT LINES OPENED
(KEYLEN® VALUE)
Figure 22. A Formatted ABEND Dump Printout (Part 8 of 14)
CORE CUEUE
0420 0CO3FEE4 (CO00064 CCOGCCEC 000000CS 040C00CC 0006A124
Figure 22. A Formatted ABEND Dump Printout (Part 9 of 14)
DISK
0438 00049038 00G4ACOA
0440 0004ASAE 2800000C 4CO06ASEQ 28000000 0006A5EG 2800000C 00000000 28C00CO0
0460 000EASEC 28000000 0CO6ASEQ 0GO6ASEQ 0006A54C 00077478 00077510 00000138
0480 0d019710] €00000C1 0CO00015 0000000A 00000348 00000015 0Q0197A0]00000C01
0440 0CGC0C15| C000000A 00000348 00000015 00000338 00000018 00000065 |00039CAQ
04C0 DCO0OCOO| 210CO0FF CC1E
ADDRESS OF ADDRESS OF ADDRESS OF
REUSABLE THE CPB NONREUSABLE
DISK DCB FREE POOL DISk DCB

Figure 22. A Formatted ABEND Dump Printout (Part 10 of (4)

TCAM Diagnostic Aids 79

80

OS TCAM User’s Guide

Terminal Table: Following the terminal name table are the terminal-table entries.
They are listed in alphabetical order with one entry for each terminal. The format
of an entry is shown in Figure 22, Part 12.

NAME AA
TRM O3AFD4

where AA is the name of the terminal and 03AFD4 is the hexadecimal address of
the terminal-table entry.

The last three bytes of the field STATE/DESTQ are a pointer to the QCB for this
terminal. The field IN/OUTSEQ contains the next expected sequence numbers,
input and output, for this terminal.

A sequence number of 0001 means that the first message is the next message
expected. : -

TCAM Destination QCBs: Following this heading are entries for all destination
QCBs for the terminal-table entries. There is one set of entries for each QCB.
Depending on the type of queuing used, one QCB may service several terminals.
See Figure 22, Part 13 for the format of the QCBs.

The last three bytes of the field RELLN/DCBAD contain a pointer to the data
control block (DCB). The first byte is the relative line number for this QCB. The
last two bytes of the field INTVL/MSGCT contains a count of the number of
messages on this queue.

TCAM DCBs: This section includes the three different types of TCAM
DCB—the line group DCBs with their related line control block (LCB), the
checkpoint DCB, and the message queues DCBs. The DCBs are illustrated in
Figure 22, Part 14.

ADDRESS OF
TERMNAME TABLE
TNT CCCE 1801891C 00031410 1A001A10 18004301 FO4F8900
00084301 F0508900 00084301 FO511810 O7FE
SRCHX 0010 ENLEN 08 MIDEN G3CF67 LEN 0027
CCCDE 18898990 00031A98 1A881A98 18884389 T04F8980
00084389 70508980 0084389 T05107F6

Figure 22. A Formatted ABEND Dump Printout (Part 11 of 14)

ADDRESS

NAME AA OF ace IN | ouT

TRM C3AFD4 STATE/DESTQ 1803D550] IN/OUTSEC 000100001 ALTO/DEVFL 0000640C STAT 00000000 CHCIN 08
CIAL CIGITS 03020006 NEXT EXPECTED
ACCR CHAR 02276126 SEQUENCE
TRANS BLOCK 0090 NUMBER

Figure 22. A Formatted ABEND Dump Printout (Part 12 of 14)

TCAM DESTINATICA QCB'S

QCB8 03D0OC CSFLG/ELCHN 420C0000 PRI/ZLINK 00000000
ECLDT/STAT 000C00CO SCBOF/INSRC 00030000
RELLN/DCBAD 0q23A840| FLAG/QBACK 02000000

STVTQ/STCHN 10030008

MESSAGE

ocs COUNT

ADDRESS ON THIS
QUEVE

Figure 22. A Formatted ABEND Dump Printout (Part 13 of 14) ‘

STPRI/SLINK 5003EBA8
INTVL/MSGCT 000q00C0] PRLVL/LKRRN OCC3ADFO

DCB 03A9B8 (LINE GROUP) is the starting address, in hexadecimal format, of
this line group DCB.

On the line D/S INTERFACE, the last three bytes of the first word contain a
pointer to the message handler. The last three bytes of the third word are a
pointer to the input/output block (IOB) base. The last three bytes of the fourth
word are a pointer to the translate table. The first byte of the fifth word is the
IOB index.

On the line FOUNDATION, the first two bytes of the first word are the offset of
the DD entry from the beginning of the task I/O trace (TIOT) table. The last
three bytes of the second word are a pointer to the DEB.

LCB 069280 is the starting address, in hexadecimal format, of the LCB.

The third byte of the field FLAGS/SENSE is the last (fifth) byte of the message
error record. The last three bytes of the field UCBX/RCBFR are a pointer to
either the recalled buffer or the last buffer serviced by the buffer allocation (PCI)
routines. The last two bytes of the field ERBCT/TTCIN are the index into the
terminal name table of the terminal currently connected to this LCB. The last
three bytes of the field MSGFM/SCBA are a pointer to the current station
control block (SCB).

See Appendix C for a complete description of the three types of TCAM DCBs
and the line group LCB.

Using the Dump: If you cannot find your problem by examining your code, one of
the first things that you should do with the dump is identify the TCAM QCBs,
DCBs, and LCBs by terminal. This can save you a lot of page turning.

First locate the terminal table in your formatted dump (see Figure 22, Part 12). .
The last three bytes of the first entry (STATE/DESTQ xxhhhhhh) are the address
of the QCB for this terminal. Go through the terminal table; find and mark the
QCSB for each terminal with the name of the terminal.

Then go to the first QCB entry under TCAM destination QCBs. The last three
bytes of the field RELLN/DCBAD are the address of the DCB. For each QCB,
find the DCB pointed to by this address and mark the DCB with the name of the
terminal. The field ERBCT/TTCIN in the LCB for the DCB may be useful if you
have more than one terminal on a line. The last two bytes of the field are the
offset into the terminal name table of the terminal currently connected on this

. ADDRESS OF
ADDRESS OF I08 BASE TRANSLATE
MESSAGE HANOLER ADDRESS TABLE 10B INDEX

TCAM DCB*S ADDRESS OF

CURRENT SCB
DCB 03A9B8 (LINE GROUP}
DEVICE INTERFACE 00016814 12039910 01020048 17000000 €00381F0
0/S INTERFACE 1203835C] 003C0040 040691C8 0043850 [08P0000O
FCUNDATION [0180k040 odo 12
EXTENSION T OFFSET ADDRESS OF 039910 010300FC 17000000
oee

10
IAVITATION LISTS 000382CO

LCB (6928C KEY/QCBA 00069280 i’ﬁl/LlNK EC03%C2C RSKEY/STCBA 1803C338 RSPRI/RSLNK 20068F94
EOLTD/TSOB 00001400 CHAIN/INSRC 1C000000 SCBO/SCBDA 00000000 ISZE/FSBFR 04000000

LAST (3TH) BYTE— FLAGS/SENSE C20000p0 ECBCC/ECBPT TFO39BEC FLAG3/CSW 00000000 0000000
OF MESSAGE STOCC/START 40069320 DCBPT 0003A988 RCQCB 0404FBY0 INCAM/ERRCT 00000000
ERROR RECORD UCBX/RCBFR O0[06E660] RECOF/STATE 00000102 TSTSW/RECAD FO0OC000 ERBKY/ERBGE 00039C88
ERBPY/ERBLK E4039C2C| ERBST/ERBCH 41000000 ERBCT/TTICIN 010(000A] MSGFM/SCBA 0Cj06DB18 |

ERMSK/INVPT 00038208| TPCD 53001111 05010905 000000AA

SNSV/CSHSV €CCC0000 0€400002 ERCCW 29580001 600658EA

00069310 00039970 0060818 00000814

TERMNAME
ADDRESS OF TABLE INDEX

RECALLED BUFFER
OR THE LAST
BUFFER SERVICED

Figure 22. A Formatted ABEND Dump Printout (Part 14 of 14)

TCAM Diagnostic Aids 81

82 OS TCAM User's Guide

line. The field may be zero, indicating a dial line with no terminal connected at
this time. Otherwise, the field gives the offset into the terminal name table of the
single terminal connected to this line.

At this time, you can find the associated DEB and DD entry for each DCB, in
case you should need it for further debugging.

In the DCB, the second word of the line FOUNDATION is a pointer to the DEB.
The first two bytes of the first word of this line are the TIOT offset.

To find the DD entry from the TIOT offset in the DCB, use the following steps
(see Figure 23):

1. Convert the TIOT offset from hexadecimal to decimal.
2. Subtract the total length of jobname+stepname+procname. This length is
always 24 bytes.

404
24
380
3. From the formatted portion of the OS dump, under the TIOT, the line labeled
DD is a DD entry in the TIOT. The first byte on this line is the length of the
DD entry. Divide the total from step 2 by this length.

X‘14’ = Decimal 20

380/20=19
Therefore, the DCB is associated with the 19th DD entry (starting with 0).

Now that you have found and identified all your QCBs, DCBs, LCBs, DEBs, and
DD entries, you can begin to look for your problem.

Find the current buffer. AVT+X‘2D0’ is a pointer to the current buffer.

The current buffer, at an offset of X‘0C’, gives the address of the LCB for this
message, at an offset of X‘10’, the terminal-name table offset of the source
terminal, and, at an offset of X‘28’ (if this is the first unit), the terminal-name
table offset of the destination terminal. You now know which message was being
processed when the problem occurred. You also know where the LCB is, which
terminal was sending, and which terminal was receiving. The source and destina-
tion offset fields may not be filled in. These fields are updated upon execution of
certain message handler macros. However, the LCB is correct and always present
in the prefix.

Find the LCB pointed to by the buffer prefix, and, in the LCB, find the SCB
address at an offset of X‘5SC’. The SCB address is the last three bytes of the entry
MSGFM/SCBA.

DCB 03A908 (LINE GROUP)
DEVICE INTERFACE QO00177€4 12039910 010200A8 17000000 C003B1AC

D/S INTERFACE 1203835C 00300040 0206D860 01043740 E0000000
FCUNCATION 01941040 0CO016F94 12
EXTENSION 039910 010200A8 17000000

INVITATION LISTS 0003B1CO

TI10T OFFSET
X ‘'0194'= 404 DECIMAL

~ Figure 23. Finding a DD Entry from the DCB (Part 1 of 2)

Locate the SCB in the unformatted section of the dump. The fifth word (at offset
X‘10’) in the SCB is the first four bytes of the message error record. The last byte
of the message error record is in the LCB at the third byte of the entry
FLAGS/SENSE. Examine the message error record thoroughly, as it contains all
the status information about the current (or last) message.

The last message, and thus the message error record, for each line can be exam-
ined in the same manner as the current message. The address of the last buffer
processed by each line is in the LCB at the entry UCBX/RCBFR.

If your system fails when transmitting a message, find the message-handler macro
routine that is the next, current, or last macro executed on the current buffer.
This helps you determine what the system was doing when it failed.

First, find the current buffer at AVT+X‘2D0’. Add X‘0C’ to the address found at
this location to obtain the LCB address. Add X‘5C’ to the LCB address to obtain
the SCB address.

The second word of the SCB points to the parameter list of the message handler
macro that is the next, current, or last macro executed on the buffer. The macro is
usually an inmessage or outmessage macro. However, if you have a multiple-
buffer header, the parameter list is for an inheader or outheader macro. Go to the
parameter list. The first byte is an index into the VCON table for the message
handler macro routine involved. A pointer to the VCON table is found at
AVT+X2D8’.

If the first two bytes of the parameter list contain X‘0100’, inmessage or outmes-
sage processing is either complete or has yet to begin, or you had a single-buffer
header when performing inheader or outheader processing.

From your code, from the information gathered at the system console, from
terminal listings, from the operator’s description of what happened, from the
message error record, from the buffer prefix, and from the various trace tables if

TICT JaB LINKGO STEP STEP1
0 DD 14040140 STEPLIB 0040€500 80002910
| DD 14040140 SYSuUDUMP 00401400 80002810
2 DD 14000008 INARU 00400A00 €0000000
3 DD 14000008 OUTARU 00400000 0C000000
4 DD 14000008 IN2760 0041C€200 0€000000
5 DD 14000008 0ouT2760 00410400 00000000
6 DD 14000048 APPIN 00410600 0000000C
7 DD 14000048 APPOUT 00410800 00000000
8 DD 14040140 DISKDD 00410A00 80002750
9 0D 14040140 RESDISK 00410C00 80002790
10 DD 14040140 CKPTDD 00410F00 80002750
11 DD 14040140 LOGDD 00411200 80002750
12 0D 14040140 oDLOG 00411400 80002750
13 0D 14020140 COMMWRITE 00411800 80002A44
14 0D 1404014C ATLOD 00411800 80001410
15 DD 14040140 .001050 00420200 8C001458
16 DD 14040140 DURDD 0642€400 80001488
17 DD 14040140 NYCDD 00420600 800014A0
18 DD 14040140 WASDD 00420800 80001400

(VIS 00 |14p4014C RALDD 00420A00 800013F8

DD ENTRY

ASSOCIATED

WITH THE DCB LENGTH OF DD ENTRY IN HEXADECIMAL

Figure 23. Finding a DD Entry from the DCB (Part 2 of 2)

TCAM Diagnostic Aids 83

you specified them, you must decide what the problem is—or what to look for next.
From this point on, only experience can tell you what to do.

Stand-Alone Dump
To prevent losing data in the OS ABEND routine, and to see the complete status
of the system at the time of a program check, you may set the wait bit on in the
program new PSW and recreate the condition that caused the program check.
When the system enters a wait state, the program check has occurred, and a
stand-alone dump revealing the entire system status at the moment of the failure
can be obtained. For non-program check problems (system ABEND), you can
obtain a stand-alone dump revealing the entire system status at the moment of
failure by placing an address compare stop at the entry to ABTERM.

Use the OS service aid programs to create a stand-alone dump. You should
assemble and link-edit the dump (IMDSADMP) service aid before problems are
encountered. The time you spend to assemble one of these programs and to add it
to your system is time well spent. OS service aid dumps are:

1. Low-speed dump. This dumps main storage directly to the printer. It is an
unformatted dump, printed in hexadecimal, 4 bytes to the word, 8 words to the
line. The main-storage address is printed at the left-most column of the dump,
and the character equivalent of the 8 words at the right-most column. The first
two lines on the first page of the dump are the general-purpose register con-
tents. Figure 24 illustrates the start of a printout from a low-speed stand-alone
dump.

2. High-speed dump. This dumps main storage to a magnetic tape that can be
printed and formatted at a later time using another service aid program. This
printout can be made on the same or some other system.

Several options are provided by the service aid programs. These are discussed in
IBM System/360 Operating System: Service Aids, GC28-6719, in the section
IMDPRDMP.

You can use the following JCL to assemble the low-speed dump.

//SLOWDUMP" JOB MSGLEVEL=(1,1)
//STEP1 EXEC ASMFC
//BSM.SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//ASM.SYSIN DD *
IMDSADMP IPL=191,CPU=360, PROTECT=NO, TYPE=LO,OUTPUT=POOE
END
/*

aaaass s s L R e e e e e -

R' 0 7 TTT600000060 60000000 00CDOCOD 00000000 . 00329000 00322000 DI000ICI J0D000000 *eessecscscsscccscsscsscsoscsccnset
—00000030--000 WW%MWQM&%

0090———00000191-00001600-00030000-60000028 ——083050804002000 60383 —8L036000— Kvvvvrovrrrrrverrrrve Tvvevrvreved——
300320 FFF50001 5007ZDIA OOODOCDO 00003000 OD:)DFFOO 03330330 FF063315 80000000 #.5.0000c0c0sesccscscscssnccccscc®
~-300040—--- F0064368 -00400C001--F0064330. 00007708 — 0JF32800--00C0BDC--00040303-I0D09LES—%Dsuve ssDvssvevesdernnsesersros¥®
300060 00C40000 000097D8 00040009 D0J0JZOE ~ 00290000 20212CC0 00040300 J000926A *.0eeeveQeccvccccccescccrscscrcne®
—40000005 080330083 40303301 —— 05301000 40300440-06001303- 30300440 —%Kevve—wvvever vvvrven so vevwsvo— b ——
0000AC C0000000 £0000C00 ©00O040D 00C00000 00222000 000000C0.-0300023) J00JC000 *eceeecaceccccsscsvscccsccsccssoace®
00--00000600-00030003--66303030-----062300000- 80039660-23093333-)6I00000 - Xevsvswrvosvsvesssssssssrsrssssned

—>300160—-—C0000000 000000066-00000000-820001760— 03340000 003389F0-03003303-I5606000—Kevevvvrvevssversssrsrssdevovvrvv®-—
00182 FFQ060018 80000000 00J0018A 01B8AJ18A FFJ02190 2333019C 00000301 J0234B64 *cesacecacsee

~—300LA0—----00067000--00034034-- 00034L34-30366880— 03064260 00034AE8-00000333 12034938 Feeevevevss Veosvouwwok -
20c1ce 00000000 00072B88 O0D3CFAA 000349CO 8007200C J003D572 00000000 OCCOCOCY) *eceeeccessveoosrvoccssseNececccoce®

—2001E3——000060300--60000600-00063036000500000-——03239060-00500660-00000393-30906000- Svvrvvevrvyvisrvar s ssrrrvarerereet - —

essecssecsscsscsese®

Figure 24. Start of a Printout from a Low-Speed Stand-Alone Dump

84 - OS TCAM User’s Guide

You can use the following JCL to assemble the high-speed dump.

//FASTDUMP JOB MSGLEVEL=(1,1)
//STEP1 EXEC ASMFC
//ASM.SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//ASM.SYSIN DD *
IMDSADMP IPL=190,CPU=360,PROTECT=NO, TYPE=HI,
OUTPUT=T283

END

/%
The following JCL prints the dump tape.
//DUMPPRT JOB MSGLEVEL=(1,1)
// EXEC PGM=IMDPRDMP
//SYSPRINT DD SYSOUT=A
//PRINTER DD SYSOUT=A,SPACE=(121,(80006,100))
//TAPE DD UNIT=2400,VOL=SER=DPTAPE, LABEL=(,NL), *
// DISP=0OLD
//SYSUT1 DD UNIT=SYSDA,DISP=(NEW,DELETE), *
// SPACE=(2052,(257,10))
//SYSIN DD *

GO

END
Ve

Note: The SPACE= parameter shown in the sample JCL may not reserve
enough space if you select all the options.

Once you know how to locate the address vector table (AVT) and a line control
block (LCB) in this type of dump, using a stand-alone dump is similar to using a
formatted dump. This section shows how to locate these and other important
control blocks, and gives some examples using a stand-alone dump.

Finding the AVT: To find the AVT in a stand-alone dump, get the address of the
communications vector table (CVT) from absolute location X‘10’. X‘10’ may not
contain this address, because the stand-alone dump program may destroy it. If
this is the case, find the CVT address at absolute location X‘4C’.

Add X‘FO’ to the address of the CVT. The address at this location is a pointer to
the address of the AVT, which starts eight bytes beyond the beginning of the
INTRO macro.

Example:
The contents of the word at location X‘4C’ is X‘D548’.

D548 CVT address
FO Offset into the CVT
D638 Pointer to the AVT address

The last three bytes at location X‘D638’ is 019A08, which is the pointer to the
AVT address. The last three bytes at location 019A08 is 023170, the address of
the AVT.

Finding the Current Buffer: AVT+X‘2D0’ contains a fullword pointer to the
current buffer.

Finding the Line I/0 Interrupt Trace Table: AVT +X‘174’ contains a fullword

pointer to the control block for the line I/0 interrupt trace table. The control
block contains:

TCAM Diagnostic Aids 85

86

00D500
00D520
C0D540
C0D560C
000580
00D5A0
0005C0
00DSE?Q
00D60C
c0D620
00D640
000660

0199Co
0199€EC
C19A00
019A20C
019A4C
J19A6C
019A80

023140
923160
023180
0231A0
0231C0

00C10CCO 40000000 00012BF8 00012BA4 00018658 80000000 00000000 00C00CO0 *seee secoecBooossscsccssaccsaceck
80600000 00Q0ANAAN 000C0000 00000000 00000000 00000000 00000000 00000000

ocococse F23TART [0c009EOC 00009494 000OD4DC 00011928 00000000 OOCOOECC

00009c26 005C.%L7 0000795C 0000109E 000010C6 00009858 00002950 0CCOFD4C

0C71252F 000119C0 0GO07A68 00011A88 00012C68 00000000 OAO307FE 0000D4EO

00011AC8 0C0075F4 00000C00 000104CO 00010984 0001064C 000037CO 10011794

0C002BAC COCOQE78 0C01A0C0 OCO1CC3E 00009574 00001086 0000018A 000119CO

00004526 COD00000 0000AA10 OOO0TFFFF 000C0000 00000000 00011BD8 0000400C

00006266 CO0OD510 0CCOO0CO 00017B60 0000510C 00000000 00000000 penentas cevescese¥
000CD518 00011BE8 ©0000C00 00000000 00000000 00000000 80019A08] AYT ADDRESS***NeseeYeseeeerseososcccaascesaas*
0CCCOC00 €COO9CS4 0C0C0000 00000000 0C0C0000 00000000 S50BOA128 4>AUALEZ B S
D207C000 0209620 CCO241A0 ACBE4TFO AODAS0B0 ALOE45A0 AOC8D207 CO000038 *KeeseooosceosvselooboscsssHKoooask
404C4C040 40404040 4C404040 40404040 0000050 0000000 000199F8 01019108 * ccefiossecsaBassl®
0BO19AES CO019B18 CSC5C4D8 E6C14040 01032C90 20019670 00019048 02019200 *eeeYeeooIEDQWA osecocccccccccscc*
C00193E0 00000028 0Cf02317C) 00C00000 000196A8 9000BC62 00000000 000C0CO0 *eseeecccsscsssssvsses cecese®
€CO0CCCO 0000000C O(ADDRESSOC000000 00052800 00001000 0005380C 00019428 *cecececcccsccccsscsse P
0005380C €0001800 C(OF AVT JCO019A38 0005500C 00002000 00057000 00019A48 . ¥eveeecsosebioovssosbioccccassesass®
000570CC €CCO9800 CSC5C4D8 C3C14040 00040082 00019930 FFE50C68 40032394 %eeeceees IEDACA cesesccceVer sook
000000CO 000166E0 00032000 00019660 00032000 00000800 00000010 00C00001 ¥ceeececvcesecso—sscccsccaccccsce*
DFDFO2CF CER5Wy < 01400513 13131313 START OF AVT(160130 -011F0CL3 13131313 *yeeeceses sssessessscscsssacsasct
ETE2CAET E'gp mcp [47FOF502 03E3C104 [G0000000 00060FBO 00023188 50023EC4 *XSeXeFeee05¢eTAMeesoooecocsobo D
CC0525A8 Ouuuuuuyu 0C0231B8 40023644 5C0195A0 000158C8 000157A0 00017144 *eeeeecoescces sos¥eossacHecaoonoak
0C01586C €0019578 CG019SEQ 000195A0 ©0000000 4007ECBA BOO29BBA 00CO0CCO *eee=vsesscscsssssses sosssescece™
€CCCOC54 00052548 0C02BB3A 00023188 80052772 0002C102 400273FC 01060880 *eeeccosecsccscsssccscsohe covecces*

Figure 25. Finding the AVT in a Stand-Alone Dump

offset +0 address of the current entry
offset +4 address of the first entry
offset +8 address of the last entry
offset +12 address of the middle entry

Finding the Subtask Trace Table: AVT+X‘1A4’ contains a fullword pointer to the
control block for the subtask trace table. The control block contains:

offset +0 address of the next entry
offset +4 address of the first entry
offset +8 address of the last entry
offset +12 size of the table

Finding the Cross-Reference Table: AVT +X‘200’ contains a fullword pointer to
the control block for the cross-reference table. The control block contains:

offset +0
offset +4

address of the first available entry
address of the last entry

Finding the QCB for a Terminal: AVT+X‘1AS8’ is a pointer to the terminal name
table. At the terminal name table + X‘52’ the entries for each terminal start.

Each entry includes the name of the terminal (a maximum of eight bytes) followed
by the address of the terminal entry (always three bytes). The first word of each
terminal entry contains a pointer to its QCB.

Finding the DCB: QCB+X‘20’ contains a three-byte pointer to the DCB. The
first byte is the relative line number.

0OS TCAM User's Guide

Finding the LCB: There are four different ways to find an LCB. You can find the
LCB for an open line in the third word of the cross-reference table entry. Each of
the other three ways is"discussed below.

From the DCB: If the DCB is opened, DCB+X*‘1C’ contains the three-byte [OB
base address. Find the one-byte [OB index (DCB + X‘24’), multiply this value by
the relative line number of the line you are interested in (QCB+X‘20’), and add
the result to the IOB base address, then subtract X‘20’. ‘

The following example uses a fictitious base and index just for the purpose of
illustration.

I0B base 45848
IOB index + DO RLN=1
X220’ - 20

LCB address at 458F8
LCB address= [IOB base + (RLN * IOB index)] - 20

From the Buffer: The buffer prefix contains the three-byte LCB address at the
offset X‘OD’.

From the Terminal Entry: First, locate the terminal name table. Its address is in
the AVT at an offset of X‘1A8’. The actual table entries begin at X‘52’ into the
table. See Figure 26.

The format of a terminal-name table entry is

NAME FIELD TERMINAL-TABLE
ENTRY ADDRESS

where the name field is a maximum of eight bytes (the length is the value specified
in the MAXLEN= operand of the TTABLE macro), and the terminal-table entry
address is a three-byte field.

Decide which terminal you are interested in, and locate its terminal-name table
entry and the address of the terminal entry.

The last three bytes of the first word in the terminal entry are the address of the
QCB. At X‘20’ beyond the start of the QCB is the relative line number of the line
(first byte) and the address of the DCB (last 3 bytes).

Add X‘1C’ to the address of the DCB (address present only if DCB is open). The
word at this location is the base address of the IOB. Add the base address of the
IOB to the product of the contents of the byte at DCB+X‘24’ and the relative line
number. Subtract X‘20’ from this sum. The result is the LCB address for the
terminal you are interested in.

Example:
023170 starting address of the AVT
1A8 offset to address of terminal name table

023318 address of the terminal name table

The last three bytes of the word at location 023318 contain the address of the
terminal name table. Go to the terminal name table at location 0265C0.

TCAM Diagnostic Aids 87

88

02326C
023280
0232AC
0232C0
0232€E0
02330C
023320
023340
023360

026560
026580
0265AC
0265C0
0265E0
026600
026620
026640
026660
026680
02 €6A0
0266C0
0266EC
026700
026720
026740
026760
02678C
0267A0
0267C0
0267E0
n2680C

000232C8
QGo00c25
EF02418C
8C04F28B4
CC0196A8
DC1iCD227
CCO504AA
000166E0
0CO23FE8

00057148
C1024188
00001000
€2000037
00052870
D01C3054
€0023588
00016A78
000267C0O

00057148 E0057128 0000027 020573E0 19026AEC 000246EC

0€000054 00051C28 00000191 00002750 00000938 4000084C

00000018 0C0014A0 0C0C0938 0000000C 00027A48 50C0084C

02000000 00057F20 D6DTCIC4 40404040 40404040 40404C40 *ee3veeccccossessOPID

0€02342C 00C0CCCO 000234E8 00000000 00032260 D2273C54 *eeeesecccossccsvsosYorsecass—Keoo#
0€0150C4 00023170 20026579 00055080 000265C0] C0023E98 *eeKeooooeelDecososcovasbiosassocoe®
€00234C4 000234C4 00060FF8 140000C8 ADDRESS OFOC00000 *ceeecocscceDoseDeccBoceHovovonos®
£0000000 40000000 40000000 0000000C TERMNAME 0019848 *cceecececcee oee sososcccsccecoe
0002C20E 00000C00 00C60EB8 00019188 TABLE 002BAA8 *ecoYsooseoBosesossssecsssscccose®

Figure 26. Finding the LCB in a Stand-Alone Dump (Part 1 of 6)

0265C0 address of the terminal name table
52 length of the control area ’
26612 beginning of terminal-name table entries

Assume you want to find the LCB for a terminal named NYC. You can find its
entry in either of two ways. The simplest is to glance down the converted portion
of the dump printed in the right-most column and find the characters NYC.

The other method uses the control area of the terminal name table. At an offset
of X‘28’ into the table, a one-byte field gives the length of the name field. Add
three to this length to find the length of an entry. Multiply this sum by the

number of entries that alphabetically precede the terminal you are interested in.

Be sure to count the names of the TPROCESS, TLIST, and LOGTYPE macros as
entries.

0265C0 terminal-name table address

28 offset to the length of the name field
0265E8 address of the byte containing the length of the name
§+3=11 length of a terminal-name table entry.

Alphabetically, NYC is the 25th entry. Therefore,

11 x 24 = 264 = X108’

This is the offset to NYC from the start of the table entries.

026612 start of terminal-name table entries
108 offset to NYC entry
02671A address of the terminal-name table entry for NYC
From this entry, you can see that the terminal entry for NYC starts at location
0246D4.
60025224 C00264F0 0C020000 00C00C00 00000000 0000002F 20E2C5D8 4B40D5E4 *—eeeveeOccsesssccesssesss SEQe NU
D44B40C8 C9CTC86B 40E2C8D6 E4D3C440 C2C540F0 FOFOF24B 372040E2 C5084B40 *M. HIGH, SHOULD BE 0002 SEQ. *
START OF TABLED3D¢LENGTH OF NAME5SE4D3C4 40C2C540 FOFOFOF2 4B370000 00C265C0 *NUMe LOW, SHOULD BE 0002cceccses¥®
[[BC18510 000314FIELD IN BYTES 3004301 FO4F8900 00084301 F0508900 00C84301 *eceeeeccccccsscceOlascacsObocanse*
FC511810 CTFE0010 [08026767 00271889 899C0C03 1A981A88 1A981B88 43897C4F *Dsececesssescsccscccccscaccssnssl®
898000C8 43897050 85800008 43897051 OTFECIC1 40404040 40400247 D4CICICL %eessescbinsessesosbAA e o MAAAX
4G404C40 4002471C C1D3C140 40404040 0.START OF3D34040 40404002 46C0C2C2 * eesALA eesATL veeBB*
40404040 40400247 F4C2C2C2 40404040 4IENTRIES 2D6D540 40404040 02478CC2 * «e4BBB es BON eeeB®
D6E24C40 40404002 4824C3C3 C3404040 40uuUz4 T 64C3CBC1 D9404040 40024704 *0S eeeCCC eesCHAR ceok
C4E4DS40 40604040 C246ACCS C5C5404C 40404C02 4778CSES CS5D9EB40 40400249 *DUR eeoEEE eesEVERY oo%
78C7C1CS E4DB404C 4C024640 CTCSE3DS 40404040 0245FOCT £EE3EIET CLEMALLNZ #,GARUQ oo GETQ ©«0GET2760 o*
4618C8C8 CB404040 40400247 A4CBE4EE C3D2404C 40024668 TERMNAME TABLE o o nyy ceoHUYCK oeoIlX *
0247BCC3 C9D5C5C] F1404002 48ECD3CY D5C5C1F2 40400249 ENTRY FOR NYC' ,0 #,,.LINEAl +eeLINEA2 ...LOCAL1 ¥
400624854 D3D6C7C5 DSE3DSES 02493C04 C1D9EB40 40404002 45PCPSES C3404040 * +esLOGENTRY.soMARY o JNYC] %
40400246 C4DTCID9 E4DB4040 40024654 DTE4E308 40404040 02460 NAME FIELD'T * <oMPARUQ .+.PUTQ eesPUT2T*
TERMINAL-TABLEIC1 D3404040 40400246 9CD9C5D4 DEE3C5F1 4002486C DICSD4D6 %60 oeeRAL «eoREMOTEL o.SREMO*
ENTRY ADDRESS :D9 CS5D4D6E3 C5F34002 48ACD9YCS D4D6E3ZCS F4400248 CCE3CIFL #TE2 oeoREMOTE3 oeoREMOTE4 oooTAL%
qusLauay qoueedC0 E3CLF240 40404040 024928E3 C5E74040 40404002 483CE6C1 * eeaTA2 eeeTEX . oaoWA%
E2404C40 40400246 ECEGE3E3 C1404040 4002495C E6E3E3C2 40404040 02496400 *S e WTTA o EWTTB veaek
000267CA 000267EQ FOFOF1FO FOF1FLF1 FOF1FOF1l FOF1FOF1 FOF10003 00C000CO *eeceesee001001110101010101escecs*
0CCODEDT C6CIC5D3 C 4400000 E2C3D9CS5 CSDSE2EE 0000C3D6 DSESE2E6 4040FFO0 %4 oOPFIELD oo SCREENSWesCONVSH oo%
42000C00 COCO0000 CE0283A8 500283A8 0000000C 00026800 00000000 000245F0

OS TCAM User's Guide

¥oeeovscvcccclieccsasncccecsenaedl*

Figure 26. Finding the LCB in a Stand-Alone Dump (Part 2 of 6)

024680
0246AC
0246C0
0246E0
024700
024720

026AR0
026AAC
026ACO
026AEC
0268B0C
026820

024140
024160
024180
0241A0
0241C0
0241E0
024200

00010CC4
01040508
18026A¢€4
c0180C0C
03004720
0€010001

ococcaooc
8€000C00
0CC0OCCCa
oclzocce
0C026AEC
2C0000C5

17000C0C
00017634
01020250
12C248B5C
01020CA8
013C4C40
04023170

€00C20C0
€8000262
CC0100G4
01033764
19026830
0000A20C

Go to the terminal-table entry for NYC at location 0246D4. The last three bytes
of the first word are the address of the QCB.

Go to the QCB at location 26 AA8. X‘20’ into the QCB is the address of the

DCB.

26AA8
20
26AC8

address of the QCB
offset into QCB of pointer to DCB
pointer to address of the DCB.

At this location, the first byte is the relative line number for the line.

Go to the DCB at location 02418C. The last three bytes are the address of the
DCB. The last three bytes of the ninth word in the DCB contain the base address

of the IOB.

2418C
1C
241A8

2418C
24
241B0

address of the DCB
offset into DCB of IOB base address
pointer to the IOB base address

Multiply the value found in the byte located at an offset of X‘24” into the DCB by
the relative line number. Add this result to the IOB base address.

DCB starting address
offset to bytes containing IOB size
address of the byte containing IOB size

C8X1=C8

607D8
+C8
608A0

608A0
-20
60880

base address of IOB
size of the IOB
address of the IOB for this LCB

Subtract X‘20’ from this address. This is the LCB address.

IOB address

LCB address for terminal NYC

00060000 01026413 START OF 00010002
12240630 18026A20 TERMINAL 00000000
©€000000 00080¢00 TABLE ENTRY [15026AA8] 00020004

01044780 19026AEC FOR 'NYC'

0€010004 00004000
0C0CC000 0103CQ08

00080000 04V4U5SLL
00010202 00780337

00006000
00080000

0QcB ADDRESS!0000

uuuuD202
£2010200

00€30€00
02304088
00€02000
03C40500
1B026B74
05808810

¥ee0000000000000rccsscccccsrscoe¥
¥g00000000000000000e000ccccccse oF
¥eeoees0cscctavecssccccvessssovee®
¥oe0000000000000000000e s00ccsonc®™
¥e00e00t00c000s scccencccscKevare®

¥eeeovevcscssessescscscceSccccrce®

Figure 26. Finding the LCB in a Stand-Alone Dump (Part 3 of 6)

(START OF ¢ €C00000 0000000¢C

(QC8

€0000000
19057620
00C000C3
7440057D

62000000 00000000
° 08000019
'DCB ADDRESS!'CCCO0
C COCCO000 01024188
4C05744C 00057C40

RELATIVE LINE
NUMBER

000249CC 12024B5C 00300040
12023110 01START
€8€00000 0(OF DCB [60017594
€03108 BASE[06G708] 0202D350
170ADDRESS 0249F0 1202485C
00016EC4 12023110 010300FC
01020350 8CCOCO00 C4C4F2F7

0C00000C 000006000
0E0283A8 400521DC
00001800 00010000
0C0orCO0NC OE0283A8
08000000 G00CO00GC
42000000 0000000C

000000060
00000000
01000000
60057120
00000000
0E026B38

0000057C
00026AA8
00000C00
00000000
00000000
600283A8

¥eeeeveeccecscsccecrcsccecsccnne¥
¥eevecessccccccccecsccccccccccccce®
¥eeeee oo oo coe vcecssscssere—sse¥

Figure 26. Finding the LCBina Stand-Alone Dump (Part 4 of 6)

17000000

62060968 01020350
00024900 12024B5C
12023110 01020048
[Cgon0000 011C404C

LCB SIZE)40 02057070
1706000C 00024A00
F6F04040 02004040

€8C00000
00300040
17000000
00016FA4
01020350
2202580C
01170054

01084040
02C608A0
00G249E0
12023110
08C00000

00300C40

00000000

¥eesee0eccec¥eee occcccelblHeveee *
¥eeeo0e00ccscsscscsssccsc¥ece ccoe¥
¥eelEHoeoooeo oeccccccccccccccocce®
¥oe0*00e eeeQecllHoeoooe oeP0coce*
¥s0000000e000cee®ene ceeeoellQeae*

¥os eedDecscccscccccccocnecences ¥

¥eoeooelleeeeDD2760 oo ececvecce*®

Figure 26. Finding the LCB in a Stand-Alone Dump (Part 5 of 6)

TCAM Diagnostic Aids 89"

0¢STaRT

% oF LcB

06conu
0608C0C
71608E0
060900
960920
360940

Secondary-Storage Dumps

Disk Message Queues Dump

€0CeCco
ECC6CEEO
c20co0co
0CCSTF2C
CCO024GF8
0C054AA0
01022120
0806CS10

€C0000C0
€C02342C
TF0233E0
€C000200
51110103
€002317¢C
€0000003
€00000C0

90 - OS TCAM User’s Guide

0C0CC0C0 00C0GC00 0000C000 €0000000 00C000CO 58DDCCO4 ¥ooescc0scecscsccsccccccscrcccccce®
€C060888 40026AB0 00001400 00000000 000273FC 18C0GCCO ¥eee000000000 s0cc00casctccscccecH
0C000000 0000CC0O0 40060920 C002418C 00C305E8 00C00COO0
€C0CCO00 00023488 £402342C 01057F20 0000C019 40C273FC
C4090000 00COCCO0 00FFOC00 00000000 005800C2 COCOCCLD
4C0273FC 00CO1C14 020608F1 BO00OCOC1 08060910 Q0CS57F20
C10249F8 6CC00C02 02057F¢1 80000002 08057F20 00C00CCO
CC06C948 E002342C 0C060950 200521DC 00001400 10C00C00 ¥ees000ecsccccscsrcsliocccccoccccc®

Figure 26. Finding the LCB in a Stand-Alone Dump (Part 6 of 6)
Finding the SCB: LCB+X‘5C’ is a three-byte pointer to the SCB.

Finding the Message Error Record: The first four bytes of the message error record
are found at SCB+X‘10’. The last byte is found at LCB+X‘22’.

This section discusses TCAM tables and data sets, maintained on secondary-
storage devices, that you can dump to tape for later printing. Most of these tables
and data sets are optional in TCAM, and are included or excluded when you code
your TCAM program. A description of the data in the table or data set and a
description of what you must do to obtain and print a secondary-storage dump of
the data follows.

TCAM handles message traffic using queues. If your queues are in main storage
only, you cannot dump them with a utility. More commonly, they will be on a
direct access device or in main storage with disk backup, and you can print them.
This can help you diagnose, because TCAM records all messages transmitted in
the system destined for stations with disk queuing. Dump the message queues
data sets to tape at the end of the day if you wish an up-to-date log of your
message traffic. Dump them also when you have a disk queuing problem, or when
you have any problem in which queuing cannot positively be ruled out.

A TCAM utility program, IEDQXC, prints a formatted dump of all traffic direct-
ed to stations with disk queuing. You can dump the message queues data set
sequentially either by record number or by queue. You obtain the most useful
output by dumping the data set sequentially by queue. See Figures 29 and 30.

The PARM= parameter on the EXEC statement for IEDQXC determines the
contents of the dump. The format of the EXEC statement is

//stepname EXEC PGM=IEDQXC,PARM='Q=options’
Options include

DMP Prints all messages sequentially by record number.

xxx,DMP Prints all messages sequentially by record number. Replace xxx
with the 3-digit decimal total number of queues (see Note 1).

xxx,ALL Prints all messages sequentially by queue. Replace xxx with the
3-digit decimal total number of queues.

xxx,nl n1 nl,n2 n2 n2,...Prints all messages for queues nl nl nl through nj
n5 n5 (5 is the maximum number of queues that can be selective-
ly dumped). xxx is the total number of queues, and nnn is a
3-digit decimal number corresponding to the queue whose con-
tents are to appear in the dump.

The first two options are equivalent to one another and equivalent to omitting the
PARM= parameter entirely.

LocC

00345¢
00364C
003654

000000
001810
oo1810
Q01811
001814
001816
001818
001814
09Q181C
00181E
001820
001822
001824
001826
001828
001824
ool1e2c
00182€
00183C
001832
001834
001836
Q01838
00183A
00183C

00048C
20048C
00183E
003658
003672
©ococo

TERNINAL MACROS

Note 1: The total number of queues is the number of stations that use that
particular type of queuing being dumped (reusable or nonreusable). Find the
total number of disk queues in your MCP assembly listing. In the expansion
of the macro for the terminal-table entry named by TTABLE LAST=nanie,
you will find the instruction

ORG IEDNADDR
followed by the instruction

DC A(n%4+1),A(r#4+3)
where

n is the total number of queues on the nonreusable data set, and
r is the total number of queues on the reusable data set.

The n or r variable is the maximum value that you can assign to Q=xxx in the
PARM=parameter.

Example:
TTABLE LAST=EVERY,MAXLEN=8

Figure 27 shows the total number of queues.

Note 2: Define each extent of the disk data set with a DISKQnn DD
statement, where nn is the extent number (DISKQOI is the first extent,
DISKQO02 is the second, etc.). For single-extent cataloged data sets, DSN=
and DISP= are the only required parameters. For multi-extent (multivolume)

PAGE 76

ORJECT CONE ADDR1 ADDR2 STMT SOURCE STATEMENT F16NCTTN T/14/71

CSESC5D9E8404040
001810

48
000000
0014
c0ac
000F
0010
CO1E
0n1F
001C
0010
0016
co17
0019
0014
cole
0007
oooe
0009

000A

onca
0918
0000
000F

€0NCI00RCO00I008

oces

*

3331 |EVERY TLIST TYPE=D,LIST=(NYC,AAA,BBA,REMNTF3,REMOTESL ,RFMOTEL,
REMNTE2, AAy BBy ROSyTEXyALLAyHUYCK,MARY 4RAL yDURL,ATL *
LOCAL1 ,WAS,CHAR)

3334+1ECQTNT CSECT
3335+EVERY oc CLRYEVERY?' ENTRY NAME
3336+ nc AL3(IED39A)

3338+PDTCAM CSECT
3339+1F0D39A DS OF

3340+ ocC BL1'012C010D0"

3341+ oC VL3(IENQRC)H)
3342+ Dnc AL2(20) . COUNT NF TLIST ENTRIFS
3343+ oC AL2UINYC-TEDQTNT-T1)/11)

3344+ ocC AL2((AAA-TEDQTNT-7113/11)

3345+ nc AL2({(BBB-TEDQTNT-T71)/11)

3346+ nc AL2({REMOTE3-TEDQTNT-T71)/11)

3347+ nc AL2((REMOTE4-TEDQTNT-71)/11)

3348+ DC AL2((REMOTEI-TEDQTNT-711/11)

3349+ oc AL2{(REMOTE2-T1EDQTNT-71)/11)

3350+ 2] AL2((AA-TEDQINT-71)/11)

3351+ nc AL2((BR=-TIEDQINT-71)/11)

3352+ nc AL2({BOS~1ENQTNT-71)/11)

3353+ nc AL2{(TEX-TFDQTNT-T71)/11)

3354+ oc AL2U(ALA-TEDQTNT-71)/11)

3355+ oc AL2 ({HUYCK~-TEDQTNT-71)/11)

3356+ [AL2((MARY-TEDQTNT-71)/11)

3357+ nc Al 2L (RAL-TEDQTNT-71)/11)

3359+ nc AL2C{DUR-IFNQTNT-71)/11)

3359+ oc AL2({ATL=-IENQTNT-71)711)

2360+ oc AL2{(LNCALL-IFNQTNT=71)/11)

3361+ nc AL2({WAS-TENQTNT-T1)/11)

3362+ 2 AL?2{{CHAR-TEDQTNT-71)/11}

3364+ CRG TENNANDR

1365+ nc M@ﬁ‘-ﬂvﬂ(@'l*l) 10 STATIONS HAVE REUSABLE DISK QUEUING
3366+ ORG

3367+1ECQNPT CSECT

3368+TECCOPTN OC AL2(3) —»- 10 STATIONS HAVE NONREUSABLE DISK QUEUING

3349+PNDTCAM CSFCT

Figure 27. Finding the Number of Queues in a TCAM System

TCAM Diagnostic Aids 91

92

'‘0S TCAM User’s Guide

data sets, the catalog information cannot be used. Each DD statement must
define the volume identification in the same order as the volume identification
listed in the IEDQDATA DD statement for the disk initialization program
IEDQXA.

IEDQXC issues an OPEN for the maximum number of extents permitted (16).
Therefore, on your JCL printout, ignore the message

TEC103I DISKQOnn DD STATEMENT MISSING

where nn is a number from 2 to 16. The program runs successfully without these
DD statements if they are not applicable.

Example: The following JCL lists all queues from a multivolume data set:

//jobname JOB

//stepname EXEC PGM=IEDQXC,PARM='Q=xxx,ALL'
//DISKQO1 DD DSN=dsname,DISP=0OLD,UNIT=23xx, *
// VOL=SER=XXXXXX

//DISKQ02 DD DSN=dsname,DISP=0OLD, UNIT=23xXx, *
// VOL=SER=XXXXXX

//SYSPRINT DD SYSOUT=A

/%

where dsname is the same name you assigned the disk data set when you executed
IEDQXA to preformat the disk.

The queues may be long. Therefore, you can select specific queues to dump, up to
a maximum of 5. To determine the queue number for the station whose message
queue you want to dump, refer to your assembly listing. The queue numbers are
assigned in the order in which you coded the TERMINAL macros. Therefore, the
first TERMINAL macro having nonreusable queuing is queue number 001 on the
nonreusable disk data set. The same is true for reusable queuing.

You must keep two things in mind. First, if you are queuing by line (QBY=L),
TCAM assigns only one queue to all terminals on the line. Second, if you have
priority levels (LEVEL:=), then TCAM assigns each priority level a queue, and all
terminals with priority levels have an additional level of zero; therefore, there is
one more queue than the number of levels you list in the operand. For instance,
LEVEL=(241,242) generates three queues on the data set for that terminal.

Example:

NYC TERMINAL QUEUES=MN,QBY=T,LEVEL=(240,247)...
KAN TERMINAL QUEUES=MO,QBY=T,...

KIX TERMINAL QUEUES=DR,QBY=L,LEVEL=(241,243)...
BOS TERMINAL QUEUES=MR,QBY=L,LEVEL=(241,243)...
ALA TERMINAL QUEUES=DN,QBY=T. ..

FLA TERMINAL QUEUES=MO,QBY=T...

GAL TERMINAL QUEUES=DN,QBY=T,LEVEL=(242,244)...
RAL TERMINAL QUEUES=DN,QBY=T. ..

BON TERMINAL QUEUES=DR,QBY=T...

WAS TERMINAL QUEUES=MR,QBY=T...

ATL TERMINAL QUEUES=MN,QBY=T...

On the reusable disk data set, the stations have the following queue numbers:

KIX LEVEL 243 QUEUE 001
LEVEL 241 QUEUE 002
LEVEL 0 QUEUE 003
BON QUEUE 004
WAS QUEUE 005

Message Queues Data Set

Note: BOS has the same queue numbers as KIX, since they are queued by
line.

On the nonreusable disk data set, the following queue numbers are assigned:

NYC LEVEL 247 QUEUE 001
LEVEL 240 QUEUE 002
LEVEL 0 QUEUE 003
ALA QUEUE 004
GAL LEVEL 244 QUEUE 005
LEVEL 242 QUEUE 006
LEVEL 0 QUEUE 007
RAL QUEUE 008
ATL QUEUE 009

Therefore, if you are interested only in the traffic directed to NYC, use the
following EXEC statement:

//stepname EXEC PGM=IEDQXC,PARM='Q=009,001,002,003"

009 is the total number of queues on the nonreusable disk data set.

Run IEDQXC separately to dump the reusable and nonreusable disk queues, since
the DSN= parameter on the DISKQnn DD statement must be the name you
assigned when you executed IEDQXA to preformat the disk, and you must define
and preformat two data sets, one reusable and one nonreusable.

If you cannot dump your message queues data set because it is too large, either

1. code a SPACE= parameter on your SYSPRINT DD statement if you are using
a SYSOUT queue (the SPACE= default on your system may not be large
enough to contain the entire dump), or

2. allocate SYSPRINT directly to the unit on which you wish to dump the queues
(printer, magnetic tape, or disk).

The output from the IEDQXC utility program contains a great deal of information
about the message, including its source terminal, destination terminal, and how
TCAM processed it. The column headings on the printed output correspond to
the 30-byte buffer prefix for each message. See Figure 28.

Heading Explanation

NT The number of units in the buffer. TCAM determines
this using the KEYLEN= operand (the number of bytes
in one unit) on the INTRO macro and the BUFSIZE=
operand (the number of bytes in one buffer) on the TER-
MINAL macro, if specified, or the DCB macro for the

station.
LCB The LCB (line control block) address for the source
terminal.

SRCE The terminal-name table offset for the source of the
' message. The number is the position of the source termi-
nal alphabetically in a list of all terminals.
SIZE The number of bytes of data in this buffer.

ST The status byte, which is the state of the buffer when it
was written on the data set.

TCAM Diagnostic Aids 93

94

OS TCAM User's Guide

Value Meaning

X80 message has been canceled
X440’ this buffer contains an error message
X220 not used
X10 this is a TSO buffer
X08’ this is a duplicate-header buffer
X04’ SETEOF was executed
X02 this is not the last buffer of the message
Xor this is not the first buffer of the message
X0’ only one buffer is in the message
NXTREC Pointer to the next unit in the buffer.
SCAN Hexadecimal offset from the beginning of the buffer

prefix to the location of the scan pointer. The offset
is in the first byte.

NXTTXT Pointer to the next buffer in the message if this is
not the last buffer, or the message queue-back chain if
it is the last buffer.

FSTREC Pointer to the first unit of the current header buffer.

NXTHDR Pointer to the first buffer of the next message (the
next-header segment).

QBACK Queue-back chain of the first buffers of messages (the
chain of header segments).

SEQO The input sequence number.

DEST The terminal-name table offset for the destination of

the message (the position of the destination terminal
alphabetically in the list of all terminals).

In addition to the information in the prefix, information about the message is in
the last six bytes of every record, which is the data field of the disk record.

If byte 0 is X‘80’, then the record has no prefix; it is an extra r?cord. The next
three bytes contain the disk address of this record. The fifth byte contains the
number of bytes of valid data in the record. The last byte is unused. See Figure
28.

If byte 0 is not X‘80’, then the record does have a prefix.

If byte 0 is X‘00’ and the ST field of the prefix is X‘01’, then the record is all text.
The remaining five bytes of the data field are unused. See Figure 28.

If byte O of the data field is X‘00’ and the ST field is not X‘01’, then the record is
a header record that has not been serviced (the message has not yet been sent
successfully). The last two bytes are unused. See Figure 28.

If byte 0 is X‘40’, then the record is a header record for a message that has been
serviced. The next three bytes contain a pointer to the next FEFO header record,
and the last two bytes contain the output sequence number (a sequential count of
the records on the queue). See Figure 28.

If the first byte of the data field is X‘20’, then the record is a header record with a
prefix, and it has been canceled (not transmitted).

It will help you diagnose queuing problems by having all your terminals on some
type of disk queue, either disk queuing or main-storage queuing with disk backup
because it gives you a permanent record of message traffic and processing.

Figure 29 shows a sequential-by-record dump and Figure 30 shows a sequential-by-
queue dump.

TCAM Diagnostic Aids 95

96

HORNNOCOC NT LCB

N20€£1AC
0CCCC904
CSESCSDS
D3E21537
C5DSC4CS
C1094CE6

0N0CCE

TXTO000B4 NV LCB
C1CES51AC
D3C140€E3
€5C1c3Cs
cocooc]
FIELD

HDROOCCC1 NT LCB

C20651A0
€000D9D4&
€1C140C1
6140E3C8
C540€E3C8
15370115

0n0C49

SRCE SIZE ST NXTREC SCAN NXTTXT FSTREC
0Cl19 ©nN58 0C OCCONE CC45 C€000CC COOOCC
AFC1CABL E7CL1CT701 151CT76E7

NXTHOR QBACK SEQD DEST
0C00CD 00CC2C €005 0C19
4CDSEBC3 4CFS40FC FB4BFSF2 4BF4F84C *¥eeRMesoeXaeooseX NYC S 08,52,48 *

END OF VALID DATA D3D340E3 C5D904C9 D5C140CC 0900003 #EVERY / TO ALL TERMINA eseee
©C000036 02000090 00NCOCOC 2200CC22 000020E6 CYE3C3C8 C5C4CCCO *LS-*....oou...-.u....HlTCHED..*
DSCLD3E2 40153710 76E740D5 EBC340F4 404CFB4B FSF24BF3 F440C3CE *ERMINALS e*eeX NYC 4 8452434 CH*
C1E240 €l 4CC8C940 E3D640E3 CBCE40E2 [BODOOODE04FC] UNUSED #AR WAS / HI TO THE Seeasss *

DATA FIELD

TEXT RECORD

SRCE SIZE
0019 0c¢53

ST| NXTREC SCAN NXTTXT FSTREC NXTHOR
0C0000 O0CCO €0003€& 0C00B4 0CNOBD

C5E74061 40C14004 CSE2E2C1 C7C540C4 C5E2E3C9 DSCS5C440 C6D60S40 *LA TEX / A MESSAGE DESTINED FOR *
40E3C509 D4C9DSC1 D34CCIDS C4C9ES5CY C4E4CID3 D3ESBLS3T 1]3] *EACH TERMINAL INDIVIDUALLYe*,440%
DATA *eeo *
RECORD HAS
A PREFIX
DUPLICATE HEADER
SETTING
SRCE SIZE ST| NXTREC SCAN NXTTXT FSTREC NXTHOR QBACK SEQO DEST

0019 0096 [08] 000049 0055 000002 000001 0Q0004D (COCOOC COO7 OCl1

AFO1CAB1 E7C10701 151076E7 4O0DSEBC3 40F740F0 FB4BFSF4 4BFOF140 *seRMevoeXeoseoeX NYC 7 08454,01 *
€1€140C2 €240C2C2 C240C9C9 (€940C8C8 C8400000 CO4DICOO] DATA FIELD *AA AAA BB BBB III HHH see oo

C9E24CE6 C9D3D340 C2C540D6 DS4CE3C8 C54CDBE4 ICSE4UNUSEDCIDEC3 */ THIS WILL BE ON THE QUEUE SlNC*
C5E2C54C E3C5D9D4 C9DSCID3 E24CC1D9 C540D5D6 JE340C1C3 E3CI9ESCS *E THESE TERMINALS ARE NOT ACTIVE*
10760BC7 76040201 FOEBC6C6 CCO1A6CC 80000049/ 4200 *e¥eese00e0000eFFeaSesccnce *

HDROON 04D

NT LCB

020651AC
0C00E2C1
40C1C1C1
C5F240D9
40C1C140
4CCEE4ESR

acocs3

HDRCDOC1IA NT LCB

020€51A0
©000C5C9
CSEECSD9
C5DSD4C9
CE540E3Ce
D4D6E3CS

ooroelc

SRCE SIZE ST NXTREC SCAN NXTTXT FSTREC NXTHDR QBACK SEQO DEST
0019 0CA8 OA (©0000B3 COA9 O0000B4 00004D 0000B9 00C001 C€OOD 0011

CTC5€240
40C2C2C2
C5D4D6E3
C2C24005
C3Dp215C9

SRCE

SIZE

D6D540E3 C8C540E7
4009C504 D6E3CSF1
C5F34009 C5D4D6E3
EBC340E6 C1E240C3
C9C940C8 €8CB40C2

ST NXTREC SCAN NXTTXT

40DSEBC3 40F1F340
40D9C5D4 D6E30000
C5F440D3 D6C3C1D3
€8C10940 C1E3D340
D6E240C1 800C00B3

SERVICED

FYTREC

FOF84BF5 F84BF2F4
00000C00

F1400306 C3C1D3F2
C4E4D940 C4C1D9ES

+9SAGES ON THE X NYC 13 08.58.2&
* AAA BBB REMOTE]l REMOTececece

E2 REMOTE3 REMOTE4 LOCAL1 LOCALZ
* AA BB NYC WAS CHAR ATL DUR MARY*

5400 * HUYCKoITI HHH BOS Acecese *
HEADER BUFFER
NXTHDR QBACK SEQO DEST

0019 C€CéD 00 00001C C€04B 00O001A O(O01A 000018 000013 0009 0019

ES5C520€3
E840CSES
D5C1D3€2
C5€2C 540
F14009CS

CBE2C940
CSD9EB4N
15D6D5C5
E3C50904
D4D6E3CS

D4CS5E2ET
614CE306
4004D6D9
C9ET40D5
F240D9C5

40DSEBC2 40FR4OFC

40C10303 40E3%00C 0018C006]

C540E3C9 D4C54015
EBC340F8 40FOFB848B
D4D6E3CS 8000901C

HDROONCIB NT LCB

020€51AC
ceecescs
CSEECS5D9
c505C4C9
C54CE3C8
D&4DEE3CS

020n1C

OS TCAM User’s Guide

SRCE
0019 06D 08

ESC54CE3
E840CSES
DSC1D3E2
CSE2C 540
F140D9CS

S1ZE

CBE2C94D
C5D9EB4O
1506D5C5
E3C509D4
D4D6E3CS

D4CSE2ET
6140E3D6
4004D6D9
C9ET4005
F240D9CS

ST NXTREC SCAN NXTTXT FSTREC NXTHOR
©0001C 0048 C€OCO1B

000018

FB4BF5F4 SEQUENCE

37110008 vuiruluv
F5F44BF 3 F14009C5
1900

QBACK
000C21

4CD5EBC3 40F940FC FB4BFSF4 SEQUENCE

4CC1D3D3
C540E3C9
EBC340F8
D4D6E3CS

D4C54015
40FOF84B
8000001C

40e3mo0C_00210007]

37110008 guxvuuu
FSF44BF3 F140D9C5
1900

Figure 28. Message Queues Data Set Printout

OUT NUMBER

UT NUMBER *EVERY EVERY 7 TO ALL T .

*,oEIVE THSI MESX NYC 9 08.54,52 *
*EVERY EVERY / TO ALL T caoee
ERMINALS<ONE MORE TIME .-o--o.o*
E THESE TERMIX NYC 8 08.54.31 RE
*MOTE1 REMOTE2 REMOTEeeeeee

SEQ0 DEST
000028 0009 0019

*,,EIVE THSI MESX NYC 9 08.54.52 *

ERMINALS.ONE MORE TIME a..oooo
E THESE TERMIX NYC 8 08.54.31 RE
*MOTE1 REMOTE2 REMOTEsseeee

*%% SPECIAL ChARACTERS- ECT= *,

000002

000003

000004

000005

000006

000007

000008

000009

C00C0A

000008

000COD

00CCOE

COOCOF

LCcB

CEC40 40E3C3

FOACCESE

02077¢58
9€9C€5001
CSE5CS5DS

02C€77058
909C€S001
C5EECSDS

000C0000
0cacacoo
000cCco0C

0€000000
€cCCeooc
0€0CC000

cccccooc
0€G00000
ceoceooa

02077058
9C9CS001
CSEECS50S

02C€77058
9¢9C9C01
CS5ESC509

000C000C
coacccoc

|02aeacosg)

EBC240E2

CSESCSD9

CEé4CE2ES
TB8F3F3F3
FOACCESE

c2077058
9€9CsCOl
CSESCSDS

C1D2C315
5C5C5C4C

EQB= 2,

ECA=

"BEL]

NT SRCE SIZE ST NXTREC SCAN NXTTXT FSTREC
000001 | 10€000¢] |0000)0039} [00000C00] [LEQOROCE 000CCOC]| [00000800

EDO0OC98 0OCD

00120059 0800000F
01A6ETE2 C901C2A9
EB40CS5ES C5D9E840

0C€120059 0800000F
01A6ETE2 C9C1D2A9
EB840CS5E5 C5DSES840

00000000 C0000000
00000000 0000000V
00000000 60000000

0000C0CO 00C00000
000000C0 €C000CO00
00000000 00000000

00000000
00000000
00000000

c¢ccoocoo
00000000
00000000

0C€120059
01A6ETE2
E€840C5E5

0800000F
C90102A9
C5DGE840

6C0C0C00
00000000
¢cooco00

00000000
00000000
00000000

00000000
0000C000
0goqococc

00000000
00000000
00000000

0019088

C8C9E240

00120059
ClAG6ETE2
E840C5ES5

0000000F
C90102A9
CS5DSE840

D4C2D6D3
SESESETA
EDOOCCS8

E2686868
TATA6C6C
0CD01407

00120059 0800C00F
01A6ETE2 C901D2A9
E840CS5ES CSD9IE840

37000039 0806CA61
40E3C3C1 D44O0D9E4

NXTHOR QBACK SEQO DEST

000000000] j0019|5C5C

C44009E4 D505C905

4DOFQ00C
CAE740Cs8
6140C8C9

4DOF0000
CAE740C8
6140C8C9

00C00000
6000000C
00000000

0000000¢C
00000000
00000000

4DOF00C0
CAE740C8
6140C8C9

4DCF0000
CAE7T40C8
6140C8C9

00C0000C
000C0000
0000000C

¢000000C
00000000
00000000

890Fjooce

0405C
5C5C5C4C

10000002
E4E8C3D2
40E3D640C

02000003
E4E8C302

€0000000
00000C0C
€0000C00

0300cC07
E4E8C3D2
40E3D640

070c00CS8
E4EBC3D2
40E3D640

000Cc00CO
00CC0000
acecoooe

00go0cce
€0000000
0gococcec

OF140F0
00000011

0000000C
00000000
00000000

00000000
€0000000
00€00000

00000000
00000000
0CC00000

00001200
40F140F0
00000012

00001300
40F140F0
00060013

00000000
00000000
00000000

0C000000
00000000
00000000

oqooocoe| |looooocioo

3790ECDO 0CC5A041
0001

00000001
F94BFOF 7
0000

€0620C00
4BF2F240

00660000
4BF2F240

00000001
F94BFOF7
0000

€0C00C00
€000€000

00000000
00000000
0000

€0000000
0000000C
0000

00cocceo
00CC0C00

€occocao
00000C00

00000000
00€00000
0000

00200cco
4BF2F240

00000001
F94BFQOF T’
0000

co210c00
4BF2F240

00000001
F94BFCF7
6000

€0cooceco
060€00000

00000000
000€0000
0000

00000C00
00C00000

000C0000
00000000
0000

0000pcol| jeo1gococ

CA15E740

4DOF0000
CAE740C8
6140C8C9

4F4F4F4B
6C7D707D
FE1C5CSC

4DOF00OCC
CAET740C8
6140C8C9

1EQCO0QC
D505C905

000000¢CC
E4E8C302
40E3D640C

4B4BSF5F
70701537
5C5C5C4C

C50000CE
E4E8C302
40E3D64C

ogocooac
C740405C

40FQF9
400000C0

C0000EQO
4C0F140F0
4000000E

SFSA5A5A
5C405C5C
80000000

0C0014GC
40F140F0
40000000

00C000CC
5C5C5C5C

4BFOF64B F1F540D5
0002

0019€C00
4BF2F240

00180001
F94BFOFT7
0003

TFTF7B78
0CC5A041

5B8585B7F
379Q0ECDO
3400

0019000
4BF2F240

000C00C1
F94BFOFT7
0004

€C000C00
3790ECDO

€0185C5C
CCO5AC41

Figure 29. A Sequential-by-Record Dump

¥eeoses0000000asccscccccccsvonce¥XE
%%k% TCAM RUNNING #%%%%,,4000e%*
*0eoeooeSovcoae®tkrk ..,

*.0...‘....0. 0..0..0..........0.‘
*eooee$XSTaK$eX HUYCK 1 09.07.22 *
*EVERY EVERY / HI TO seccee

¥eeee0000000e csc0cvvvccsssscccscse?
¥ooeee$XSIeKS$eX HUYCK 1 09.07.22 *
*EVERY EVERY / HI TO

ecssee
¥esv0ee000000000s0ccscccvscavcccce?
¥eee0e0e0cesecsocccncosccccsccnes¥

¥esese0000000000000000s0nnsn

¥eeossescseccesscscsscscccsaccccnsne®

¥eeesscscscssce ssssccccace®

¥eeee0scccoscccncescscvsssnse

¥eeeee0se0000c0000ssrcccccccnsoce?

¥eeeees00000e vecssvcsssssvencnce¥
¥ooeee$3XSTeKS$eX HUYCK 1 09.07.22 *
*EVERY EVERY / HI TO cccoes

¥eeeassevesees secccscscevcncccnce®
¥eeeese$XSIeK$X HUYCK 1 09.07.22 *
*EVERY EVERY / HI TO ececee

¥eoesessscsceseccsssccccsccsssnceX

secccce®

%eee0c0000000000cc0000secrccscnce?
¥eese0sss0sc0ccccscscccvsccccsonac®

¥eeecse00cccccocvcocscccccce

¥eeeQecebeceetececscosocccccsssnnc®
¥eeeee3XSIeK$SeeX NYC 1 09,0615 N*
*YC THIS IS A BUNCH O eeeee *

¥eeoeveccaces csesccassvovsenvace?
¥eeoeee3XSIeKS$eX HUYCK 1 09.07.22 *
*EVERY EVERY / HI TO

*F SYMBOLSy+s eoe $$Sceciit®
*#333 coat Il %k KKK, q000e¥
*0ooovcoSeocoace¥¥HXX L oq,,0

¥eeessevcvssce vevsescscssccccesccce?
¥o0oee$XSTeK$eX HUYCK 1 09.07.22 *
*EVERY EVERY / HI TO

#¥ALLe*oeo00e/e0ccosctccccccccccn®**

*%%% TCAM RUNNING *%%k%k%,,,0000%

TCAM Diagnostic Aids 97

SOURCE TERMINAL
I8TH TERMINAL

THIS IS THE LAST

BUFFER SO POINTER POINTER TO FIRST
TO PRECEDING BUFFER OF NEXT

ALPHABETICALLY TEXT BUFFER MESSAGE
LCB ADDRESS SIZE OF POINTER TO NEXT POINTER TO IST NO QUEUE-BACK INPUT
FOR SOURCE MESSAGE UNIT OF THE UNIT OF CHAIN OF FIRST SEQUENCE
TERMINAL =89 BYTES MESSAGE CURRENT BUFFER BUFFERS SINCE NUMBER

SCAN
POINTER

THIS IS THE FIRST

FHxhxndkkx FIRST| MESSAGE| FOR|QUEUE 00CCO2| #**%#4% OFFSET

/—\‘ 2 UNITS IN STATUS DESTINATION TERMINAL~-
BUFFER BYTE 2ND TERMINAL ALPHABETICALLY
HDR0O00CO2 NT LCB SRCE SIZE ST NXTREC SCAN NXTTXT FSTREC NXTHOR QBACK SEQO DEST
lcacr1csg |oo12| |ocsg] |es] [0ooocF] |cc4n| [00001p loooooc] (o001] |0002
moomua E7£2C901 DZA9CAE7 40C8E4ES C3D240F1 40FO0F94B FOFT4BF2 *eesesee$XSIeK$oeX HUYCK 1 09.07. 2*
F24CCSES C5£5C509 E84061 lcam«oea 400000 00100CO0 . #2 EVERY EVERY 7/ HI TO ececeee
000GOF C€1D2D31% 37600C39 1 1€CCO €0000000 GOOG0C00 00185C5C *ALL. *....../..................M*
5C5CE5C40 40E3C3C1 D440D9E4 D5CS 5C5C5C5C 3240ECDC OCOSAC4Ll *%#%* TCAM RUNNING

HDRooOCIO NT LCe SRCE SIZE

lcacircss |0012 0C5%

000CSC9C 900101A6 E7E2C90

5DGE8B4C C5
C1C3C21¢ 3700
5C5(E

00GCOF

000C15

-5& EDQOOCCSB CCDO01407 FELCSCSC

9 0806DA61 1ECCO0CC

OACCES58 EDOOOC98 0CD0O1407 FE1CS5CSC
HEACER IS ALL ZERCES

EE LT L JU
#Cececscboscnce®¥ddk cq0000 *

5C5C5C40

ST NXTREC SCAN NXTTXT\FSTREC NXTHDR QBACK SEQC DEST
08] |c0000F| |604D] {ocooce| |oooo10| 0c0c02| (0001 |0002]
D2AGCAET 4O0CBE4EB C30240F1 40F/0F94B FOFT4BF2 Feeseesce$XSIeK$eX HUYCK 1 c9.o1.2t
9 EB40614C C8C940€3 06400000 06000000 #2 EVERY EVERY / HI TC eeceee

0000CGOC C0000 *ALL.*....../.-.........oo.-.-.***
*%%% TCAM RUNNING ******...-...*

%0osceoobeosvocek®hdk ,,0000

5C€905

5C5C5C4C 8000000F 0500

Checkpoint/Restart Dump

Log Data Set Dump

98

OS TCAM User’s Guide

Figure 30. A Sequential-by-Queue Dump

The optional TCAM checkpoint/restart facility restarts the TCAM system with a
minimum loss of message data following system failure. To do this, TCAM
periodically records, in a special data set on disk, the status of each station,
destination queue, terminal-table entry, and invitation list in the system. When
the system starts up after closedown or failure, TCAM uses this information to
restore the MCP environment to its condition before closedown or failure.

No TCAM utility dumps and formats the checkpoint data set. The best way to
dump it is to use the OS service aid IMASPZAP (see Service Aids, GC28-6719,
for details). You can use the following sample JCL to dump the checkpoint data
set:

/ /DUMPCHK JOB MSGLEVEL=1
//STEP EXEC PGM=IMASPZAP
//SYSLIB DD DSNAME=CHECKPT,DISP=SHR,UNIT=23xx, *
// VOL=SER=XXXXXX
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
ABSDUMPT ALL
/%

This JCL dumps the entire data set named on the SYSLIB statement in hexadeci-
mal, with the EBCDIC translation and the mnemonic equivalent of the data.

Dump the checkpoint data set if you have any trouble restarting a system. As a
precautionary measure, also dump at the end of the day if you plan to start the
next day with a warm or continuation restart. If you cannot restart the system,
immediately compare the dump from the preceding day with a dump of the current
checkpoint data set to see if the data set was inadvertently scratched. If the
dumps are identical, there may be a problem in the restart facility.

TCAM’s message-logging facility records, on a sequential data set, the message
traffic handled by an MCP. The LOG macro instruction records either a message
or a message segment on a log data set while the message is being processed by an

MH subgroup. The LOG macro operand and the subgroup in which you code the
LOG macro determine which is to be logged—message segments or complete
messages. Anticipate the need for diagnostic aids in designing your MCP by
including logging. Once your program is error-free, you can easily remove the log
without rewriting the MCP. You should be aware that the LOG macro has an
implied WAIT in its execution. Logging a segment impacts the system perform-
ance more than logging a message. If you are logging both segments and mes-
sages, define a separate data set for each. Once the log data set is filled, normal
processing continues but logging is suspended. See the TCAM Programmer’s
Guide for details on how to code for segment and message logging.

Examine the log segment or log message output for a quick diagnosis of errors
while debugging the MCP. Dump the log data sets when you have any problems
in your MCP. By examining them you can see what message handler processing
has been performed on each message, and you can see in which subgroup the
message becomes incorrect. Dump the log data sets periodically and analyze your
message traffic to be sure you are using your resources efficiently. You can also
dump the log data sets as an accounting record, since they show all messages
processed by your MCP.

Dumping the Log Segment Data Set: To dump the log segment data set use the
TCAM utility IEDQXB. This utility prints a hexadecimal dump of the segment (a
segment is the number of bytes in the KEYLEN= operand of the INTRO macro),
with an English translation on the right. Thus, you can easily find your messages,
and you also have the prefix of the header buffer for debugging.

The following sample JCL prints the log segments from the data set LOGMSG
located on disk. The data set was created at MCP execution time.

//PRINTSEG JOB MSGLEVEL=1

//EDIT EXEC PGM=IEDQXB

//SYSPRINT DD SYSOUT=A

//SYSUT DD DSN=LOGMSG,UNIT=2311,DISP=0LD, *
// VOL=SER=111111

Ve

Using the Log Segment Dump: The log segment facility records each segment
processed by the message handler. TCAM places segments on the log data set in
the sequence in which they are handled. Therefore, the segments of one message
are likely to be intermixed with the segments of other messages on the data set.
Figure 31 shows the log segment output produced by the utility IEDQXB. The
LOG macro was included in the inheader subgroup before any processing, and in
the outbuffer subgroup after all processing. The log segment entries for the
message are on the log data set sequentially, although segments of other messages
may be intermixed. Each time the LOG macro is executed, an entry is made into
the data set. Therefore, there should be a one-to-one correspondence between
the number of entries for a message and the number of LOG macros in the
message handler. If you do not have the same number of log segment entries as
you have LOG macros, then you know when, in message handler processing, you
lost the message.

In Figure 31 the message is directed to two terminals; therefore the buffer seg-
ment passes through the outgoing message handler twice. By examining the
buffer prefix (the destination offset or the LCB if you have a dump of main
storage), you can tell which terminal received the message first. Also, the time in
the output message shows the response time of the system.

TCAM Diagnostic Aids 99

100

*XUNKNOWN

*XUNKNOWN

*%XUNKNOWN

**UNKNOWN
INHDR
LOG
ENTRY

*%*UNKNOWN

*xUNKNOWN
OUTBUF
LOG
ENTRY

*+UNKNOWN

*%UNKNOWN

*%UNKNOWN
OUTBUF
LOG
ENTRY

*xUNKNOWN

TRACE ENTRY TYPE**

020651A0 00000036
3704C9D5 C1D3E215
DOEE4CC8 E4EBC3D2
TRACE ENTRY TYPE®*

020€E1AC 00190061
D9D4ET4C DSESC340
4BF1FC4C C8C5D3D3
TRACE ENTRY TYPE**

17171717 17171717
37D4C9D5 C1D3E215
D9EE40C8 E4ESBC3D2
TRACE ENTRY TYPE**

|020€51AC 0019CC68

By examining the log segment, you can see how the buffer is processed, which can
be helpful when you are debugging your message handler.

-

Dumping the Log Message Data Set: No TCAM utility prints the output of the
message log data set. The best way to get the dump is to use the OS utility
IEBPTPCH. The prefix of a buffer on the log message data set is of no value. Use
of the log message function (LOGTYPE macro) causes any useful information in
the logged message prefix to be overlaid. Therefore, you may want to get only an
English translation of the data set contents. The following sample JCL dumps a
log message data set from an unlabeled tape. The FIELD= and LRECL= values
are the same as the value specified in the KEYLEN= operand of the INTRO
macro.

//PRINTMSG JOB MSGLEVEL=1

//DUMP EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=MSGLOG,UNIT=2400,LABEL=(,NL), *
// VOL=SER=LOGTYP,DISP=0LD, *
// DCB=(RECFM=FU, LRECL=84 ,RLKSIZE=168)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *
PRINT MAXFLDS=1
RECORD FIELD=(84)
VA

LENGTH=- 0054

02000000 000C0000 1AC0CO1A 0000174C F1FOF5F0 7DE20COC ¥eeseo0ecscecesscccscsceces 1050eSee*

375ESESE SEE740D5 EBC340F2 4040F84B F5F14BFS F34004C1 #oMINALSeeeaeeX NYC 2 845153 MA®

406140C8 C940E3D6 4O0E3C8CS 00404040 40404040 40404C40 *RY HUYCK o HI TO THE. *
LENGTH- 0054

000690CO 00430000 0C0690CC 0690C0O0C 00150003 00190000 ¥eeevsescc0cccscccccscescccecocce®

F340FCF8 4BFSF24B FOFT74005 E8C34061 40F240F0 FB4BFS5F2 *RMX NYC 3 C84524C7 NYC o« 2 08.52%

D640E3D6 40D4C515 17171717 00404040 40404040 40404040 *,10 HELLO TO MEeeceese *
LENGTH- 0054

17171717 37000000 1FOOCO1F 00001D4C F1lFOFSFO 7DE24B15 ¥eeoeeccesccccscccccscvrces L0O5C.Saa*
375g5ESE SEET40D5 EBC340F2 40FOF84B FSF14BF5 F340D4C1 #oMINALSeeeeeeX NYC 2 08451453 MA%

406140C8 C940E3D6 37E2C8CS5 DT404040 40404040 40404C40 %RY HUYCK « HI TO.THEP *
LENGTH- 00%e BUFFER
PREFIX

€000C000 _003DOCOC 0C0G00C0B 0690C000 00150004 02 1docoe ¥ee0e00csc0e000cssncccsscssccccsen®

D9D4AFO01 CABLE701
C1DS4CE6 C1E24061
TRACE ENTRY TYPEXx*

E6CSE3C3 CBCS5C440
D904C9D05 C1D3E215
C34C€140 C8C5D3D3
TRACE ENTRY TYPE*%

|030€5CCE 0019C078

07C11510 760B0476 150EC1CA B116E740 DSEBC340 F440C3C8 *RMooeeXoeooasoassooseeeX NYC 4 CH*
40C8C940 E3D640E3 CBCS540E2 47404040 40404040 40404C40 *AR WAS . HI TO THE S.
LENGTH- 0054

E3C5D9D4 C9D5C1D3 E2401537 00000000 00150003 00190COC *HITCHED TERMINALS ccceccccscscee*®
375ESES5E S5EET40D5 EBC340F3 40FOF84B FS5F24BFO F74CDSES *RMINALSeeeeeeX NYC 3 0Be52.07 NY*
D640E3D6 40D4C515 3TE3CBCS 0040404C 40404040 40404C40 *C o HELLO TO ME..THE. *
LENGTH- 0054 BUFFER
PREFIX
0CC68AND 00480000 0CO68A0C 068A0000 00150004 QOCA0COC ¥eeoeHeooeooeccescsssveccascccnane®

DSD4ET4C DS5ESC34C
FOFE84BF5 F24BF3F4
TRACE ENTRY TYPE**

E6CSE3C3 CBCS5C44C
17171737 40E3C3Cl
FOACCES8 EDCO0C98
TRACE ENTRY TYPExx%

030€50C8 0000C024
5C5C5C4C 40E3C3C1
FOACOES8 EDCOCCYS

TRACE ENTRY TYPE*x*

{03Cces5cC8 00190078

F44LOFOF8 4BF5F24B F3F440C3 C8C1D94C E6C1E240 6140F24C *RMX NYC 4 CB8.52434 CHAR WAS . 2 *
40CB8C940 E3D640E3 CBCS54NE2 47404040 40404040 40404C40 *08.52,34 HI TO THE S.
LENGTH- 0C54

E3C509D4 C9DSC1D03 E2401517 17171717 17171717 17171717 . *WITCHED TERMINALS cecccecsccoree*

D440D9E4 DS5D5C9DS5 CT7404CS5C 5C5C5C5C 3790ECDO OCCSAC41 *e000 TCAM RUNNING ocecccccsccece®

0CD014C7 FE1C5C5C 5C5C5C4C 9140404C 40404040 40404C40 ¥Qeveseccccccccncses o *
LENGTH- 0054

2000000 CONNCONC CCC68C37 000C00CC CO0OCCO0 OC255CSC ¥eosHeooooeseoossoseccccsecsccnseX
D440D9E4 D5D5C9D5 CT4C405C SC5C5C5C 3790ECDC CCCSAC41 *e0e TCAM RUNNING cevscccccccce®
0CDC1407 FELCS5CSC 5C5C5C4C 004C4040 40404040 404C4C40 *Oooeovcscccsccssscs o *
LENGTH- 0054 BUFFER
PREFIX
08065620 00480000 rCL6562C 06562000 00150CC4 C225000C ¥eeoHooeooooteacssscsnsccccccecce®

D9D4ET4C DSESC340
FCFE4BFE F34BF2F3
TRACE ENTRY TYPE*x

E6CSE3C3 C8C5C440
17171737 CABLETC1
CS5DSEB4C 6140E2N¢E

OS TCAM User’s Guide

F440FCF8 4BF5F24B F3F440C3 C8C1D94C E6CLE240 6140F24C *RMX NYC 4 C8,52.34 CHAR WAS . 2 *
40C8C947 E3D640E3 (C8C540E2 4740404C 40404040 404C4C40 *08e53.23 HI TO THE S, *
LENGTH~- 0C54

E3C50904 C9D5C1D3 €2401517 17171717 17171717 17171717 *WITCHED TERMINALS ceeecocosveces*

07011510 76E740DS EBC340F5 40FO0F84B F5F24BF4 F840CSES *eeeoeeXooseeeeX NYC 5 (8452448 EV*
40€103D3 4CE3C5D9 04C9NS5C1 C0404040 40404040 4C40404C *ERY « TO ALL TERMINA, *

Figure 31. Log Segment Output

OBR/SDR File Dump

Using the Log Message Dump: Logging messages gives you an excellent data
collection facility. Use it to provide a long-term backup for messages transmitted
in your network for accounting. In Figure 32, the LOG macro is included in both
the inmessage and outmessage subgroups. Since there are two destinations, there
are three log entries for the message. It is difficult to tell the input message from
the outgoing message, since the log entry is made before outgoing processing.
However, the entries are sequential. You know that the first entry found for a
message is the input message. TCAM makes an entry each time the message
passes through the message handler. As with logged segments, entries are made in
the order of processing, so there may be intermixed messages.

Note: The unreadable data appearing in the message is the translation of the
buffer prefix.

< RM X X NYC 4 08452434 CHAR WAS / HI TO THE S
< WITCHED TERMINALS X NYC 4 08452434 CHAR WAS / HI TO THE S
< RM X X NYC 5 08.52.48 EVERY / TO ALL TERMINA
< LS HED ERMINALS @X NYC 4 8452.34 CHAR WAS / HI TO THE S
< RM X X NYC 5 08.52448 EVERY / TO ALL TERMINA

Figure 32. Log Message Output

A TCAM 1I/0 error-recording facility creates records on disk when terminal-
related I/0 errors occur. This recording, an extension of the OS Outboard
Recorder (OBR) and Statistical Data Recorder (SDR) error-recording programs,
can be used to diagnose line and terminal problems and thus increase line availa-
bility and efficiency.

TCAM ordinarily keeps a certain amount of information about line and terminal
behavior. If you suspect that a specific line or terminal is malfunctioning, you can
increase the amount of information kept about the suspected terminal with
intensive-mode recording. The operator command ERRECORD creates tempo-
rary error (intensive mode) records for recoverable 1/O errors occurring on a
specified line or station. The format of the command is:

control characters| operation operand

control chars ;MOD[FY i [procname.] id ;,
F jobname

INTENSE= (LINE(grpname,rin tsense, icount
address 15

TERM,statname

where

grpname is the name of the line group containing the line for which incident
records are desired.

rin is the relative line number of the line within the group.
address is the machine address of the line.

statname is the name of the station for which incident records are desired.

TCAM Diagnostic Aids = 101

102.

0OS TCAM User’s Guide

sense is the type of intensive recording desired. You can select

BO bus-out check

CR command reject

DC data check

EC equipment check

IM general intensive mode
IR intervention required
LD lost data

M2 leading graphics for 2740 Model 2 terminal
OR overrun

TO time-out

UE unit exception

count is the decimal number of records for the incident type. The maximum
and the default are 15.

If you do not use intensive mode, recoverable errors for a station or line are not
recorded, but an internal counter is incremented by one. The command

OPID F JOBNAME, INTENSE=TERM,NYC,TO, 12

entered from a secondary terminal specifies that you want an error recording on
disk for the station named NYC in the job JOBNAME whenever there is a
time-out, up to a maximum of 12 records.

The OS utility, IFCEREPO, retrieves the error recordings from disk, dumps them,
and formats them. The recordings are maintained in the SYS1.LOGREC data set.
The sample JCL below formats the data set, prints it (both individual and summa-
ry records for each terminal), and scratches the OBR/SDR file.

//0BRSDR JOB MSGLEVEL=1

//STEP EXEC PGM=IFCEREPO,PARM=(MCOS,PS)

//SERLOG DD DSNAME=SYS1.LOGREC,DISP=0OLD,VOL=SER=SYSRES, *
// UNIT=2314

//EREPPT DD UNIT=00E

/%

The TERMN= option in the PARM= parameter allows you to dump your
SYS1.LOGREC data by terminal name. See the OS Utilities publication for a
complete description of the PARM= parameter and the control statements.

You should consider several things when running IFCEREPOQ. First, since this-

-data set is not reusable and does not wrap around, it will have to be reinitialized

when it fills up or on some periodic schedule. IFCEREPO reinitializes the data set
as it dumps. Second, you should code the parameter PS to ensure that all records
and summaries are written. PS is the default. You will generally be more interest-
ed in the summary records than in the individual records. Finally, if you use
SYSOUT=A rather than allocating directly to the output device, code a SPACE=
parameter, since the' OBR/SDR file is fairly large.

Dump the OBR/SDR file whenever you have a problem that seems to be caused
by a malfunctioning line or station, such as lost data or lost line. You should also
dump the file at the end of the day, to keep yourself aware of the hardware status
of your network. In addition, once the SYS1.LOGREC data set is full, it is very
time-consuming to dump.

OBR/SDR Table: TCAM 1/0 error recording writes certain terminal-related 1I/0
errors on disk. This recording, an extension of the OS Outboard Recorder (OBR)
and Statistical Data Recorder (SDR) programs, reduces the time that the TCAM

system is inoperative by providing useful information for diagnosing line and
terminal problems.

Four types of I/O error records are written in the data set:

1. Permanent error record. Written for each permanent [/O error. A permanent
1/0 error is either an unrecoverable error (an undefined, unanticipated 1/0
error for which TCAM provides no error-recovery procedure), or an 1/0 error
for which TCAM provides an error-recovery procedure, but which TCAM has
tried several times to correct and failed each time.

2. Temporary error record. Written whenever an error occurs for a particular line
or station specified by an ERRECORD operator command, if TCAM success-
fully recovers from the error. _

3. Counter overflow record. Written when either the SIO counter (the number of
start I/O commands issued) or the temporary error counter for a particular
terminal-table entry is about to overflow.

4. End-of-day record. Written for each station and line in the line group that has a
terminal entry and a nonzero temporary error counter.

The OS utility program [IFCEREPO prints a formatted dump of these error records
from the data set SYS1.LOGREC. The following sections discuss the output that
you can use to determine problems.

I/0 Device (Outboard) Records: TCAM produces and stores these records for
permanent device errors. TCAM terminal statistics and errors are outboard
records. Two types of recording mode are possible for an outboard record:

1. Unrecoverable. A record of a permanent I/O error. See the description of a
permanent error above.
2. Intensified. A temporary error record which is described above.

Figures 33 and 34 are examples of an unrecoverable and an intensified error
record, respectively. Each has the same formatted data. The meaning of each
field follows. The command issued to get the intensified I/O error record was:

f linkgo, INTENSE=TERM,NYC,TO, 15

TCAM Diagnostic Aids 103

PROGRAM SECTION:

TCAM OUTBOARD DATA EDITING AND PRINTING SECTION
MODEL-UNIVERSAL

--- RECORD ENTRY SOURCE - OBR --- TYPE - OUTBOARD
CHANNEL/UNIT ADDRESS 0018 DEVICE TYPE 2702

COMMUNICATION ADAPTER TYPE IBM TERM 1
TERMINAL TYPE IBM 2740

PROGRAM IDENTITY LINKGO

DAY YEAR HH MM 5SS TH
DATE - 210 71 TIME - 00 16 09.35
COMMAND DATA
CODE (CC) ADDRESS (DA) FLAGS (FL) COUNT(CT)
FIRST CCW 01 03492D 60 00 0003
FAILING CCW 0l 03492D 60 00 0003
COMMAND UNIT CHANNEL
KEY (K) ADDRESS (CA) STATUS(US) STATUS(CS) COUNT(CT)
Csw 00 072118 OE 00 0003
UNIT STATUS CHANNEL STATUS
ATTENTION 0 PRGM-CTLD IRPT 0
STATUS MODIFIER 0 INCORRECT LENGTH 0
CONTROL UNIT END 0 PROGRAM CHECK 0
BUSY 0 PROTECTION CHECK 0
CHANNEL END 1 CHAN DATA CHECK 0
DEVICE END 1 CHAN CTL CHECK 0
UNIT CHECK 1 I/F CTL CHECK 0
UNIT EXCEPTION 0 CHAINING CHECK 0
SENSE BYTE DATA
INITIAL FAILURE FINAL RETRY
BYTE O 01000000 BYTEO 01000000
CMND REJ 0 CMND REJ 0
INTV REQD 1 INTV REQD 1
BUS O CHK 0 BUS O CHK 0
EQUIP CHK 0 EQUIP CHK 0
DATA CHK 0 DATA CHK 0
OVERRUN 0 OVERRUN 0
LOST DATA 0 LOST DATA 0
TIME-OQUT 0 TIME-OUT 0
TERMINAL NAME NYC RECORDING MODE *UNRECOVERABLE*
SIO CNTR 00006 TEMPORARY ERR CNTR 000
MASK 00000000 INITIAL SELECTION 0

Figure 33. An Unrecoverable /O Error Record

104 OS TCAM User's Guide

PROGRAM SECTION:

TCAM OUTBOARD DATA EDITING AND PRINTING SECTION

MODEL-UNIVERSAL
-~~ RECORD ENTRY SOURCE - OBR ---

CHANNEL/UNIT ADDRESS 002C

TYPE - OUTBOARD

DEVICE TYPE 2703

COMMUNICATION ADAPTER TYPE IBM TERM 1

TERMINAL TYPE IBM 2740

PROGRAM IDENTITY LINKGO

DAY YEAR HH MM S§ TH
DATE - 211 71 TIME-07 17 55.13
COMMAND DATA
CODE ADDRESS FLAGS COUNT
FIRST CCW 01 03492D 60 00 0003
FAILING CCW 02 065C01 80 00 0002
COMMAND UNIT CHANNEL
KEY ADDRESS STATUS STATUS COUNT
Csw 00 065190 OE 40 0001
UNIT STATUS / CHANNEL STATUS

ATTENTION 0 PRGM-CTLD IRPT 0

STATUS MODIFIER 0 INCORRECT LENGTH 1

CONTROL UNIT END 0 PROGRAM CHECK 0

BUSY 0 PROTECTION CHECK 0

CHANNEL END 1 CHAN DATA CHECK 0

DEVICE END 1 CHAN CTL CHECK 0

UNIT CHECK 1 I/F CTL CHECK 0

UNIT EXCEPTION 0 CHAINING CHECK 0
SENSE BYTE DATA

INITIAL FAILURE FINAL RETRY
BYTE 0 00000001 BYTEO 00000000

-CMND REJ 0 CMND REJ 0

INTV REQD 0 INTV REQD 0

BUS O CHK 0 BUS O CHK 0

EQUIP CHK 0 EQUIP CHK 0

DATA CHK 0 DATA CHK 0

OVERRUN 0 OVERRUN 0

LOST DATA 0 _LOST DATA 0

TIME-OUT 1 TIME-OUT 0

TERMINAL NAME NYC
SIO CNTR 00222

MASK 00011110

Figure 34. An Intensified 1/O Error Record

RECORDING MODE *INTENSIFIED*
TEMPORARY ERR CNTR 001

INITIAL SELECTION 0

TCAM Diagnostic Aids

105

106

0OS TCAM User's Guide

Program section: The program section that is generating the printout.

Model: The IBM System/360 model for which the printout is applicable. In
this example, UNIVERSAL indicates that the printout is applicable to models
40, 50, 65, 67, 75, 85,91, and 195.

Record entry source: The error environment or recovery management program
that generated the record in the SYS1.LOGREC data set.

Type: The type of printout.

Channel /Unit address: The hardware address of the line on which the error
occurred or on which the terminal in error is located.

Device: The transmission control unit being used.

Program identity: The name of the job that was active when the error occur-
red.

Date time: The date and time at which the error occurred. The day is the
Julian calendar date and the hour is in continental (24-hour) time.

First CCW: The first executed channel command word (CCW) in the channel
program.

Failing CCW: The channel command word that failed to execute.
CSW: The channel status word when the failure occurred.

Sense byte data: For a description of the contents of the sense byte, see the
component description publication for the transmission control unit that you
are using. '

Terminal name: The name of the terminal on which the error occurred. This is
the name you assigned in the TERMINAL macro.

Recording mode: The type of error recording. It is either unrecoverable or
intensified.

SIO cntr: The start I/O counter, a count of the number of EXCPs issued for
the line before the error occurred. It is reset to zero each time an entry is made
in the SYS1.LOGREC data set.

Temporary err cntr: A count of the number of temporary 1/0 errors that
occurred for the terminal since the last record was made. It is reset to zero
each time an entry is made in the SYS1.LOGREC data set.

Mask: An eight-bit field that is used if you issue the ERRECORD operator
command. The first four bits indicate the type of error for which the terminal
was intensified.

Bits Meaning
0001 time-out
0010 lost data
0011 overrun

0100 data check

0101 equipment check

0110 bus-out check

0111 intervention required

1000 command reject

1001 unit exception

1010 leading graphics for 2740 Model 2 terminals

The last four bits indicate the number of error recordings yet to take place.
The original value is specified in the command and decremented by one for
each recording made.

Initial selection: Set to 1 if an error occurs on the first attempt to contact the
control unit.

Examine this error record after you suspect that you have trouble on a line or
terminal. You can determine the reliability of your line by comparing the number
of start I/Os to the number of temporary errors. Once you know there is trouble
on the line, the CCW helps you determine which activity was failing to execute.
This can lead you to the hardware feature that is failing.

Summary of Outboard Records: You can find valuable information in the summary
of TCAM 1/0 outboard records for each line in your network. By examining this
output, you can determine the reliability of the line and of terminals on the line. If
you see that a line is continually failing with permanent errors, then look at the
individual outboard record for the terminal to pinpoint the failure. Examine the
summary output for each of your lines daily, to remain aware of the status of your
network. Take a summary listing of each line as soon as your TCAM system is
operating to your satisfaction, and use it as a base for examining the line reliabili-
ty. By comparing each day’s summary to this base summary, you can see if your
line and terminal reliability has decreased.

Figure 35 shows a summary output for the line address 011 on a 2702 control
unit. The ratio of unrecoverable errors to start I/Os (30 to 165) is relatively low,
indicating that the line is reasonably reliable. However, you should keep a watch-
ful eye on this line, since the majority of the permanent errors occurred on the
same operation, time-out on read next text.

If you have more than one terminal on a line, the summary output gives informa-
tion about each terminal, with a total summary of the line. Figure 36 shows the
output for line address 022 on a 2703 control unit with two stations located on the
line. There is no question about the reliability of this line or the terminals on the
line, since the unrecoverable error to start I/O ratio is extremely low (2 to 128 for
the line, 1 to 44 for the terminal CHAR, and 1 to 84 for the terminal WAS).

Figure 37 shows an entry for a terminal that was placed in intensified mode by the
ERRECORD operator command. There were two unrecoverable errors of 380
start I/Os before intensification began. After the command was issued, 265 start
I/0s occurred and 2 temporary errors for which the terminal was intensified
occurred. The error-to-start 1/0 ratio is extremely low in both cases, indicating a
very reliable line and terminal.

End-of-Day Recording: You get an end-of-day recording for each station that was
active and had errors (nonzero temporary error counter). Itis nor a summary of
the station activity; it simply indicates what occurred on the station since the last-
error record entry was made in SYSI.LOGREC. Figure 38 shows an end-of-day

TCAM Diagnostic Aids 107

DAY YEAR DAY YEAR
QUT BOARD DATE RANGE-204 71 TO 204 71
SUMMARY OF TCAM |/O OUTBOARD RECORDS FOR CUA/LINE 0011
TOTAL NUMBER OF RECORDS 0030 '

DEVICE TYPE 2702

TOTAL NUMBER OF UNRECOVERABLE (UNREC) ERRORS 0030

TOTAL NUMBER OF S10'S 0165
TOTAL NUMBER OF TEMPORARY FAILURES 0002 TOTAL NUMBER OF INTENSIVE MODE (INTEN) ERRORS 0000
TOTL|TOTL | TOTL{LOST [cOMD|COMD|UNIT| TIME | TIME | TIME | TIME| INTR | OVER|BUSO|BUSO|BUSO| DATA | DATA|DATA| EQPT
ERROR TYPES |S10$ EEMP PERM |DATA|REJ |REJ [XCPT|OUT | OUT | OUT | OUT | REQ |RUN |CHK |[CHK [CHK |[CHK [CHK |CHK | CHK
RR } ERR
ALL | INITlOTHR| ALL | PRE |ReaD | DIAL |OTHR| ALL | ALL | WRIT | DIAL |OTHR| WRIT |READ [OTHER] ALL
CONDITION SEL PARE | INTXT Rﬂ
2740~} TERM TERM REC TRANS
GRAPHIC RESP ELEC /O PARITY PARITY
ERR ERR ERR ERR
TERMINAL|RECORD
NAME MODE |
RAL UNREC | 0165 | 0002 | 0030 | 0001 0028 0001
INTEN

Note: 1In this and the following two examples, the solid lines have been added for clarity.
They are not part of the output from IFCEREPO,

Figure 35. A Summary Outboard Record

DAY YEAR DAY YEAR
OUT BOARD DATE RANGE=-211 71 TO 211 71
SUMMARY OF TCAM I/O OUTBOARD RECORDS FOR CUA/LINE 0022 DEVICE TYPE 2703
TOTAL NUMBER OF RECORDS 0002

TOTAL NUMBER OF S10'S 0128
TOTAL NUMBER OF TEMPORARY FAILURES 0002

TOTAL NUMBER OF UNRECOVERABLE (UNREC) ERRORS 0002
TOTAL NUMBER OF INTENSIVE MODE (INTEN) ERRORS 0000

erRoR Tvpes [1oTL | ToTL{T0TL| LOST [complcomp| unit| Time | Time | Time | Time | inTk {over| Buso BUSO|BUSO |[DATA| DATA| DATA|EQPT
SIOS | TEMP{PERM [DATA|RE) {REJ [XCPT{OUT JOUT | OUT [OUT |REQ |RUN |CHK |CHK |CHK |cHK |CcHK |CHK JcHK
ERR |ERR
CONDITION ALL [INIT |OTHR| ALL [PRE |READ| DIAL [OTHR] ALL | ALL | WRIT | DIAL|OTHR |WRIT [READ [OTHR| ALL
SEL PARE | NTXT
2740-11 TERM TERM REC TRANS
GRAPHIC RESP ELEC /0 PARITY PARITY
ERR ERR ERR ERR
TERMINAL|RECORD
NAME | MODE
UNREC | 0044 | 0001 | 0001 ' 0001
CHAR
INTEN
UNREC | 0084 | 0001 | 0001 0001
WAS
INTEN

Figure 36. A Summary Outboard Record for an Unrecoverable 1/0 Error

entry. The fields have the same meaning as those in the individual outboard
records. However, the program identity is not available, since you have removed

TCAM from your system.

The outboard records (OBR) can be a valuable tool to determine problems,
because it keeps you aware of line and terminal status. The statistical data records

108 OS TCAM User’s Guide

DAY YEAR DAY YEAR
OUT BOARD DATE RANGE=-211 71 TO 211 71 .
SUMMARY OF TCAM I/O OUTBOARD RECORDS FOR CUA/LINE 0020 DEVICE TYPE 2703
TOTAL NUMBER OF RECORDS 0004

TOTAL NUMBER OF SIO'S 0645 TOTAL NUMBER OF UNRECOVERABLE (UNREC) ERRORS 0002
TOTAL NUMBER OF TEMPORARY FAILURES 0002 TOTAL NUMBER OF INTENSIVE MODE (INTEN) ERRORS 0002

TOTL | TOTL [TOTL |LosT [cOMDjcomp| UNIT| TiME | TIME | TiME [TiME | INTR | OVER[BUSO|BUSO[BUSO| DATA |DATA|DATA| EQPT
ERROR TYPES [510s | TEMP|PERM IDATARES [REJ | XCPT| OUT | OUT | OUT [OUT | REQ JRUN |CHK |CHK |CHK | CHK |CHK |CHK | CHK

ERR |ERR
ALL | INIT |oTHR| ALL [PRE |READ[DIAL [OTHR| ALL | ALL | WRIT| DIAL [OTHR| WRIT [READ [OTHER ALL
CONDITION SEL PARE [NTXT
2740-11 TERM TERM REC TRANS
GRAPHIC RESP ELEC 1/0 PARITY PARITY
ERR ERR ERR ERR

TERMINAL[RECORD|
NAME MODE

UNREC| 0380, 10002 0002
NYC

INTEN | 0265 | 0002

Figure 37. A Summary Outboard Record for an Intensified 1/0 Error

TCAM OUTBOARD DATA EDITING AND PRINTING SECTION
MODEL-UNIVERSAL

--- RECORD ENTRY SOURCE - OBR --- TYPE - OUTBOARD
CHANNEL/UNIT ADDRESS 001E DEVICE TYPE 2701

COMMUNICATION ADAPTER TYPE IBM TERM 1
TERMINAL TYPE IBM 2740

PROGRAM IDENTITY NOT AVAILABLE

DAY YEAR HH MM SS TH
DATE - 196 71 TIME - 00 13 53.13
TERMINAL NAME BBB ‘ RECORDING MODE *END OF DAY*
SIO CNTR 00025 TEMPORARY ERR CNTR 001
MASK 00000000 INITIAL SELECTION 0

Figure 38. An End of Day Record

(SDR) are not as valuable to you in a TCAM environment, since they contain
temporary error records for devices other than lines or terminals, such as tapes
and disks (not discussed in this manual).

TCAM Libraries Dump
You should always have a listing of your TCAM and system base and PTF level
available. You must have this listing for all problems that require IBM assistance.
An OS service aid program, IMAPTFLS, prints this listing. The following sample
JCL lists all members in the named libraries. Applied PTFs and local fixes are
listed with the associated module.

//JOBLIST JOB MSGLEVEL=1
//STEP EXEC PGM=IMAPTFLS
//LISTREST DD DUMMY

TCAM Diagnostic Aids 109

Service Aids

Dumping TCAM Trace Tables

Printing Trace Table Dumps

110

OS TCAM User's Guide

//SVCDD DD DSNAME=SYS1.SVCLIB,DISP=SHR

//MACDD DD DSNAME=SYS1.MACLIB,DISP=SHR
//LINKDD DD DSNAME=SYS1.LINKLIB,DISP=SHR
//TCAMDD DD DSNAME=SYS1.TELCMLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A

/¥

All names on the DD statements are optional except LISTREST. See OS Service
Aids for a complete description of the IMAPTFLS programs.

You can use the four optional TCAM service aids for diagnosing problems. These
are the line 1/0 interrupt trace table, the subtask trace table, the buffer trace, and
the cross-reference table. These trace facilities record valuable data about
TCAM, and in the case of a malfunction, they can be very useful during the
testing and diagnostic stage. You should include them in your system. See the
following sections, and the TCAM Programmer’s Guide, to learn how to include
and use these facilities in your system.

A TCAM routine, named COMWRITE, writes the 1/0 interrupt trace, the
subtask trace, and the buffer trace tables onto a sequential data set named COM-
WRITE. To use this routine, you must include either at assembly time or at
INTRO execution time the INTRO operand COMWRTE=YES. COMWRITE is
required, in order to see a total picture of the system activity before and after TP
failures, since it provides a complete history of system activity.

For the 1/0 and subtask traces, if you did not specify COMWRTE=YES on the
INTRO macro, the table in main storage wraps around after it is filled. So, with
COMWRTE=YES, you can have a smaller trace table, requiring less main stor-
age, with little fear of losing entries.

Each trace is most commonly written to tape. There are three reasons for using a
tape as the trace data set. First, you can dump the trace selectively by time.
Second, you can have a large trace table. If your data set is on a direct access
device, you must be sure that 1/2 n(16)+16, where n is the total number of
entries in your trace table, is less than the byte capacity of one track. A tape
supports large records; therefore, there is little worry about the trace-table size.
Third, once your data set on disk is full, the data set wraps around and you are apt
to lose trace-table entries as they are overlaid. Since you must have a very large
data set to avoid wrapping, it is more economical to have your data set on tape.

If the COMWRITE routine has been used to dump the trace tables to secondary
storage, the utility program to format and print these trace tables is COMEDIT
(IEDQXB). An example of the JCL to print the trace from an unlabeled tape
follows; the data set named COMWRITE on the SYSUT1 statement is the name
of the DD statement in the MCP execution deck that created the COMWRITE
data set.

//PRINT JOB MSGLEVEL=1

//STEP EXEC PGM=IEDQXB, PARM='xxxx'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=COMWRITE,UNIT=2400,DISP=0LD, *
// LABEL=(,NL), VOL=SER=DUMMY

/*

Line 1/0 Interrupt Trace Table

Replace xxxx in the EXEC statement with IOTR to print the [/O trace, with
STCB to print the subtask trace, and with BUFF to print the buffer trace. If you
omit the PARM= parameter, all three traces are printed.

Another parameter on the EXEC statement prints the trace-table entries starting
at a specified time. For example, if a problem occurs after 3:00 on a certain day,
you can print the trace from 3:00 on. The parameter is

BLOCK=hhmmddd

where hh represents the hours in continental (24-hour) time, mm is the minutes
(60 minutes to an hour), and ddd is the Julian date (January 1 is 001, etc.). The
following EXEC statement prints the subtask-trace table entries that occur after
2:15 p.m. on January 8:

//EXEC PGM=IEDQXB,PARM='STCB,BLOCK=1415008"

Always include a small trace table (relative to the number of lines in your net-
work) in your MCP.

This TCAM service aid sequentially records the I/0O interrupts that occur on a
specified line. When an 1/0 interrupt occurs on a line for which you requested
line I/O trace, TCAM stores information about the interrupt, including the
channel status word (CSW) and channel command word (CCW), as an entry in
the line I/O interrupt trace table. However, TCAM does not record interrupts
resulting from retries by error-recovery procedures.

Activating the Trace: Whether this trace is available in main storage depends on
how you design your MCP. To include it, code on the INTRO macro instruction
the operand TRACE=n, where » is an integer from 1 to 65535 that specifies the
number of entries in the table. The default, TRACE=0, excludes the table. You
can include the operand at assembly time, or at INTRO execution time in response
to the message

IEDOO2A SPECIFY TCAM PARAMETERS

that you receive only if you omit one of the following INTRO operands at assem-
bly time:

STARTUP=, LNUNITS=, KEYLEN=, and, if DISK=YES, CPB=
The response keyword is T=n or TRACE=n.

Start and stop the I/O interrupt trace for a line with the GOTRACE and NOT-
RACE operator commands, respectively. Their formats are:

GOTRACE:

control characters| operation | operand

control chars {MODIFY} {[procname.]id},TRACE: {grpname,rln} JON

F jobname address

NOTRACE:

control characters| operation | operand

control chars {MODIF [procname.]id| ,TRACE= jgrpname,rin{ ,OFF
F jobname address

TCAM Diagnostic Aids 111

112

0OS TCAM User’s Guide

where

grpname is the name of the line group and is identical to the DDNAME=
operand of the DCB macro instruction for the line group for which you enter
the command.

rin is the relative line number of the line within the line group.

address is the hardware address of the line and is identical to the UNIT=
operand of the DD statement for the line for which you enter the command.

Example: F GOTCAM,TRACE=022,0N is the command from the system
console to start the I/O trace on the line whose address is 022 in the job named
GOTCAM. The command F GOTCAM,TRACE=022,0FF stops the trace on
line 022.

Start the line traces one at a time. You cannot enter multiple addresses in the
trace parameter.

The trace table resides in main storage allocated to the MCP and, therefore, to get
a copy of the table, you must dump your MCP. See COMEDIT in the TCAM
Programmer’s Guide.

If you wish to dump the I/O trace table to a sequential data set to provide a
history of I/0 activity, you must activate the COMWRITE routine for the 1/O
trace table dump by issuing the DEBUG operator command.

control characters | operation | operand

control chars {MODIFY} [procname.]id},DEBUG:L,IEDQFE20
F jobname

Note: COMWRTE=YES must have been specified either at assembly time or
INTRO execution time.

This loads (L) the dump routine for I/O trace. If you want to deactivate the
routine, replace the L with D; otherwise, the command is the same. The routine
prints half of the table at a time to the sequential data set while the other half in
main storage is being filled. Therefore, your most current entries in the trace table
are still in main storage.

Example: Printing the line I/O trace table when COMWRITE is used.

//PRINT -~ JOB MSGLEVEL=1

//STEP EXEC PGM=IEDQXB,PARM='IOTR'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=COMWRITE,UNIT=2400,DISP=0LD, *
// LABEL=(,NL), VOL=SER=DUMMY

/*

The I/0 trace table is also printed if no PARM= parameter is specified on the
EXEC statement.

The line I/O trace is most important for all line-oriented problems. Start the trace
for a particular line as soon as you detect trouble on the line (lost or bad data or
lost line), and then dump it.

—_——

Using the Line I/0 Interrupt Trace: The TCAM line I/0 interrupt trace table
records I/0 interrupts occurring on specified lines. Interrupts that result from
retries by TCAM error-recovery procedures are not recorded.

Use this table to determine problems at a station. By examining the first channel
command word (CCW), the interrupt CCW, and the channel status word (CSW),
you can determine which channel program was executing on the line, and possibly
determine whether the station or data set is in error.

The Table in Main Storage: If you specify a nonzero value for TRACE= in the

INTRO macro, the trace table is located in main storage; its address is at
AVT+X‘174°. Figure 39 shows the line I/0 interrupt trace table format.

AVT

+X'174!

FORMAT OF THE 1/O INTERRUPT TRACE TABLE CONTROL BLOCK

BYTE EXPLANATION
Ly 0 ADDRESS OF CURRENT TRACE ENTRY

1 | |

+4 ADDRESS OF FIRST TRACE ENTRY
I I 1

+8 ADDRESS OF LAST TRACE ENTRY
1 1 1

+12 ADDRESS OF MIDDLE ENTRY

. 1 | |

FORMAT OF AN I/O INTERRUPT TRACE TABLE ENTRY

BYTE:]
+
o v csw
o] wemeewr ™ RREEE,
+16 FIRST CCW IN +21 TP OP CODE OF
CHANNEL PROGRAM CHAIN FIRST CCW
+24 STATION NAME 30 Em{ﬂygg ':\Etsslso

Figure 39. Line 1/0 Interrupt Trace Table Format

The meaning of each field in the entry follows.

Sense byte: For a description of this byte, see the component description
publication for the transmission control unit that you are using.

CSW: The channel status word. The entry contains the last seven bytes of the
CSW, which has the following format.

TCAM Diagnostic Aids 113

114

0OS TCAM User's Guide

COMMAND
ADDRESS STATUS COUNT

8 32 48 63

Command address: Bits 8 to 31 form an address that is eight
bytes higher than the address of the last CCW used.

Status: Bits 32 to 47 identify the reasons why the CSW was
stored.

Bits 32 to 39 are obtained over the I/O interface and are set by the
device or the control unit.

Bits 40 to 47 are set by the channel for conditions in the subchannel.

Each of the 16 bits indicates a condition.

Bit Condition Bit Condition
32 attention 40 program-controlled
' interruption
33 status modifier 41 incorrect length
34 control unit end 42 program check
35 busy 43 protection check
36 channel end 44 channel data check
37 device end 45 channel control check
38 unit check 46 interface control check
39 unit exception 47 chaining check

Count: Bits 48 to 63 form the residual count of the last CCW used.

CCW: The channel command word. It is 64 bits (8 bytes) and has the follow-
ing format.

COMMAND | DATA
CODE ADDRESS | FLAGS COUNT

0 8 32 37 48 63

Command code: Bits 0 to 7 specify what is to be done. An X indicates that the
bit position is ignored; an M is a modifier bit.

Bits Meaning

XXXX0000 invalid

MMMMO0100 sense

XXXX1000 transfer in channel (TIC)
MMMM1100 read backward
MMMMMMO1 write

MMMMMM10 read

MMMMMMI11 control

Data address: Bits 8 to 31 specify the address of a byte in main storage; it is
the first location referred to in the area designated by the CCW.

Flags:

Bit 32: Chain data (CD) flag. When on, specifies data chaining, causing
the storage area designated in the next CCW to be used with the current
command.

Bit 33: Chain command (CC) flag. When on and the CD flag is off, it
specifies chaining of commands, so that the command specified in the
next CCW is initiated when the current operation completes normally.

Bit 34: Suppress length indication (SLI) flag. It specifies whether an
incorrect length is indicated to the program. When this bit is on and the
CD flag is off in the last CCW used, the incorrect length indication is
suppressed. When both the CC and SLI flags are on, command chaining
takes place regardless of the presence of an incorrect length condition.

Bir 35: Skip (SKIP) flag. It specifies that the transfer of information to
storage during a read, read backward, or sense operation is to be sup-
pressed.

Bit 36: Program controlled interruption (PCI) flag. If on, the channel
generates an interrupt when the CCW takes control of the channel.

Count: Bits 48 to 63 specify the number of byte locations in the storage
area designated by the CCW.

See Principles of Operation, GA22-6821, for a detailed discussion of the CCW
and CSW.

Teleprocessing Operation (TP OP) Code: A TP OP code with an even-numbered
value represents a text or nontext CCW for which an interrupt is anticipated. A
TP OP code with an odd-numbered value represents a CCW for which no inter-
rupt is anticipated. TP OP codes are shown in Figure 40.

TCAM Diagnostic Aids 115

116

OS TCAM User’s Guide

Name Value Description
TPWREOT X'o1! Write EOT for selection
TPOPEN X'02' Open
TPWRPOLL X'03' ‘Write Polling Characters
TPRDRESP X'04' Read Response to Polling
TPWRPAD X'05" Write pad characters
TPENABLE X'06* Enable on Dial Line
TPWRAD X'o7' Write Addressing Sequence
TPRDRSPD X'08' Read Response to Addressing
TPWREOA X'09! Write EOA Sequence
TPRDRPEB X'0A! Read Response to EOB/ETB
TPWRCPU X'0B' Write CPU ID
TPRDENQ x'oC! Read ENQ
TPWRENQ X'0D! Write ENQ
TPRSPENQ X'OE' Read Response to ENQ
TPWRDLET X'OF' Write DLE EOT
TPRDID X'10' Read ID (TSO)
TPNULL X' Non-Read Write CCWs for which no

Interrupt is anticipated

TPBREAK X'12! Write BREAK (TSO)
TPENQAD X"13! Write ENQ after Selection Response
TPRDLC X'14' Read LCOUT
TPWRACK X'15' Write Response Before Text
TPWRAKNK X'16' Write Response
TPWRTONE X117 Write Tone (WTTA BSC)
TPRDIDNQ X'1g! . BSC Read ID ENQ
TPRDIDAK X'TA" BSC Read ID ACK
TPRESET x'1c Abort for Send/Receive
TPTWXID X'1E’ Read TWX ID
TPBUFEOT X'20' Buffered Terminal Reset after Block
TPCLOSE X122' Close SDR Recording
TPRSPAD X'24' Write Reset after Selection
TPRDSKIP X'51! Read Skip Loop
TPWRIDLE X'53" Write Idles Loop
TPDLESTX X'57" Write DLE STX
TPDLEETX X'59' Write DLE ETB (ETX)
TPENQRSP X'5B' Write ENQ in Response to Text
TPTEXT X'FF! Text CCW

Figure 40. TCAM TP OP Codes
Station name: The name of the terminal on which the interrupt occurs.

Channel and unit address: The channel and unit address of the connected station
when the interrupt occurs.

Part 1 of Figure 41 illustrates the four-word control section for the trace table
generated when TRACE=100 was coded in the INTRO macro.

Part 2 of Figure 41 shows an interrupt on a 2740 Model 2 station named MARY.

+372 (174)

069340
069360
069380
069340
2693C0
0693E0
969400

069600
069620
069640

AVT

069370

01039531
0cccaoqo
0006CA6S8
0CC6A218
0006A250
occecCCs
0C06E488

ocoecees
0oceccas

A0000001
€0000000C
0D40004F
¢0000001
€D000001
€C000001
0C000001

01039933 A0QCOCOF
0€000000 00000000
0206DA6C_A0000054
0606A2CSTART OF
0606A21TRACE TABLE 01039920 607

(CURRENT o(FIRST 0 00LAST)0 OMIDOLEQ *,.00000000escscccccscccccssanace®
0006582C 00069380 00069FED COO6IICO ¥aeaesccessosscscasccscasssssscec®

-~) %eeeee secccecesceseccees HUYCK oot
G103992C 607 nonaYrrrsinein 40400617 *eecesssecseResssccsscscsDUR oo
CONTROL SECTIoN 40400012 *eeeeeecscececssonssencecATL oot

C€10600CC 20000016 0103992¢C A0010003 C4E40940 40400017 *oseHoeoooeoeosscsovcceaseDUR ee¥
0106E48C 20000016 01039920 A0010003 CLlE3D340 40400012 *eelUeseseoelUccccceccceeas ATL ee®

Figure 41. The Line I/0 Interrupt Trace Table in Main Storage (Part | of 2)

cc400001 0 1NTERRUPT CCW.2 02065 R8T SEN0009 CLEID340 40400012 %ewees covsseccossscosassATL ook
€C4000017 \

/ VC4E4D940 40400017 ¥eoeos ssavscccsccescssccseDUR e ®

[cdc77110 _cC400068] 0207700C_0Q0G0C09] _ J0103992C 600000 3] D4CLDGES 40%00CL5] ®eoses sessscccscccscosse MARY]| oo

069660 sgNSED6DE € cSW 400000 01060BCG O0Cyp gp'l 0206A224 6 TP OP!9 CLlESTATION'O%CHANNEL Feveee scccccccccascoccesATL eok
065680YTE 06CCA8 CC400000 0106DCEO OCcopEg 'l 0206A2EC 6/CODE !9 C4ENAME Y04 AND UNITFecese ccecsccscesssecessDUR ce¥®
0CC6CBE8 €CCO000001 0106DBEC 20ULULU LG 01039931 80090001 D4C1UYEB 4041 5 ADDRESS *-o.Y.o-..oo-.-o-..o.-.o.HARV ce ¥
OCO6CEE8 €C400000 ©106DCO1 0000C0O01 020770D0C 600A0009 D4C1IDSE8 404uuui> eeYe eccccccccccccscocesMARY L%
00077110 €C400008 0207700C 00080009 01039920 60010003 C8E4ES8C3 D2400015 *-.... evecccssccssscccse HUYCK oo¥

0696A0
0696CC
0696EC

Figure 41. The Line I/0 Interrupt Trace Table in Main Storage (Part 2 of 2)

S.
6.

. There is no sense information for the 2702 control unit.
. The CSW

» command address is 77110. Therefore, the last CCW used storage at 77 108.
« status is 0C40. This is channel end, device end, and incorrect length.
+ count is 8. The residual count is 8 for the last CCW.

. The interrupt CCW

« command code is 02. This is a read.

« data address is 0770DC.

« has no flags set.

o TP OP code is 08. This is a read response.
e countis 9.

Therefore, the channel program was interrupted when reading the 9-byte response
found at storage location 0770DC.

. The first CCW

« command code is 01. This is a write.

« data address is 03992D.

« flags specify chain command (CC) and suppress length indication (SLI).
« TP OP code is 01. This is a write EOT for selection.

« countis 3.

Therefore, the first channel command word in the channel program was to
write a three-byte EOT sequence for selection from storage location 03992D.
This is a write initial channel program. The TCAM PLM, shows channel
programs for terminal operations.

The station name is MARY. This is a six-byte field padded with blanks.

The terminal is on line 015.

The Formatted Table: If you specify COMWRTE=YES in the INTRO macro, you
can get a formatted listing of the trace table. Only half of the table is written at a
time on the COMWRITE data set. Use the IEDQXB utility to print the formatted

TCAM Diagnostic Aids 117

trace table. If you use the utility, remember that the most current entrics in the
trace table are still in main storage.

Figure 42 is an example of the formatted output. SEQUENCE is a sequential
count of the number of 1/0 trace tables printed. If a number is skipped, records
have been lost. Prevent this loss by enlarging the size of your trace table.

Each table shows the time and date it is placed on the data set. Use the time to
trace the activity on a line just before it fails, since you know when you lost the
line.

Subtask Trace Table
A TCAM service aid, the subtask trace, records the flow of all dispatched ele-
ments. It shows where elements go in the TCAM system and which subtasks work
on them.

To use the subtask trace table, you must first understand the data flow as con-
trolled by the TCAM dispatcher, and know how to use IEDQFE10, the subtask
trace dump module. You must also understand the Method of Operation charts in
the TCAM PLM.

Activating the Trace: Whether this trace is available in main storage depends on
how you design your MCP. To include it, code on the INTRO macro instruction
the operand DTRACE=n, where » is an integer from 1 to 65535 that specifies the
number of entries in the table. To format and print the table with the COM-
WRITE routine and the IEDQXB utility, » must be between 4 and 65535. The
default, DTRACE=0, specifies that there is to be no subtask trace. Include this
operand at assembly time, or at INTRO execution time in response to the message

*#LINE [/0 TRACE** SEQUENCE- 0000027 DATE- 71.211 TIME- 07.32.29
L i - FIRST TTERMINAL CINE STATUS INTRPT TP FIRST. TP

SENSE CSw “INTERRUPT
e CCH_ . NAME ADDR ~ _UP CODE OP CODE

00 €90CCT0HC4CLLOL 02069C418C0400C2 010348E560C100C3 C1D3C1404C4G. G068 __ C4 . Ol . ALA .
CC U64CCOOC4COCCB 02064CBCC CO80009 C1U348E56CC100C3 " "C2D6E2404C407 0069 08 (3} BOS
00 25FTFCGC4CICCL 020691018CJ0400C2 C12343E5600100C3 C1D3C14C4040 0063 c4 01 ALA
DETO643T80UCATIUTC Gig68854C0C001TTTI3 C1U3492DA00I0UCT3 C3C8C1094C40 0C22 (€9 o1 CHAR
0C O5FTFOOC4LOCOL 02069C418C240502 O10348E560010003 C10D3C1404040 €068 [[_ALA
00 CSFIFONC40C0C1 0206910180040002 1934885600100 53 TCLO3CTA04C40 76368 777777 't 7 "7 70077 ALA T T
00 CSFTFCOC40LOCL 020690418CC40C02 C1l0348E560010003 C(1D3C140404C 0068 Ca [} ALA
CO O5FTFCACACCIIL U20691018C04C002 C13348E560016023 "C103CLa04C40 €068 777777 '¢a” 77 61 T TALA - T
4CLCI1 $20690418C040002 (10348E560010033 C1D3C1404040 Q068 04 01 ALA
4CCO01 020691018C04CT02" CI0348E560010003 C1D3CT404040 0068 04 01 ALA
00 O5FTFCOC4CC0G1 C205690418C040002 (10348E560010003 C1D3C1404040 0068 e o1 ALA)
00 06B8C4B0CCACG30 01068C4C2T00C053 T103492DAC0ICOC3 ™~ C3CaCTIDI4GA0 00227 03 % CHAR
00 O5FTFOCC4CCCAL ~020691018C040002 C10348E560061C003 C1D3C1404040 -CJ68 04 [} ALA
00 CHFTFO0C4CCCOT 020690%18C04CoC2 "UT0348E560010003 " ~CID3CT404G40 770068 ~ 7~ " 7704 ~ 777 ""01 TTALAT B T
0C O5FTFGOC4COG0L 020691018004C002 010348E56C010003 C1D3C1404040 0068 04 [} __ALA
G0 068C4B0C4GILUT ~ ULICEBCHFCCOCH030 C206430460CATITY ~ C3C8C1D94040 G022 00 0A T CHAR
00 068C480C43000G 01068CI9ECOCCOOCL N2064304600A0009 C3CBC1D94C40 G022 00 0A CHAR
00 O5FTFO0C4CCO01 020690418CH40002 T10348E560010003 "CID3C1404C40 7C068 ~~7"te 7~ 77 or "~ ALAT T T
00 O5FTFCGC4COCIL $20691CG18C040002 C10348ES560C100C03 CLD3C1404040 0068 04 01 ALA
0C 'C69TEBOCOOCCOS CLO69TEC2GGACHO0T "OTU34BEYE0090004 ~C206E2404040° 0069 — 7777700 7~ 77" 7709777 ' BOS T
00 J5FTFGOC40C001 020690418C040002 G10348E560010003 CLD3C1404040 0068 04 o1 ALA
D1 0643380E400 (G2 G2068BL18CA40002 C103492D60010003 C3C8CI094040 4022 uc 04 01 CHAR
00 G64CCO0C4L0CGL C2069AC180040002 010348E560010003 C2D6E2404040 0069 04 01 BOS
CO USFTFCOC40CCCL "C20691CT805400027 C10348E560010003 7 C1lD3C1404040 OC6s ~ ~ " Co 777 761 7 7 ALA
00 064CCCOC4CCLOLl 020698218C04C002 01C348E56001C003 C206E2404040 0069 _C4 o1 . 80S .
00 J5FTF00C4C0COL 02069064180040002 "0103%6E560010303 "C103C1404040 “0068 '~ 7~ 04~ TTGOLT ALA
GO 0640C00C4L0CI1 02069A018CJ40002 010348E560010003 C206E2404040 0069 04 o1 B80S
CO0 O5F7FOGC4CCCI1 02C69IC18G04C6C2 CIO0348E5600100C3 C103C1404040 0068 0% 01 ALA
00 0640CCCC400001 020698218C040002 C10348E560010003 C2D6E2404040 C069 04 on BOS B
CO I5FTFOOC4CGCIL 020690418C040002 0I0348E560016053™ CID3CT494040 0068 - C4 [+ N ALAT T
€0 C5FTFONC400001 02059101800400C2 010348E560010003 C1lD3C1404040 0068 04 o1 ALA
00 0640CCOC4CUCAL "G2069ACTECI4C002™ "O10348E560010003 “T206E2404040 0069 7 G4~ 701" "'BOS
00 O5F7F00C4COG0L 020690418C040002 010348E560C10003 C1D3C1404040 0068 G4 o1 ALA
TOT540CCCTACOTOT 0206982 18CC40N02 010348E560010003~ C2ZD6EZ404040 00659 [[} B80S
01 0643380E4C(002 02068BC18C0400C2 0193492060C1C303 C3C8C1D94040 4022 uc C4 01 CHAR
00 ISFTFO0C4CGETL T02069AC18CJ40002 010348ES60010033 C103CT404G40 00686 [01 ACA T T

Figure 42. Formatted Line I/O Interrupt Trace Table

118 OS TCAM User's Guide

IEDOO2A SPECIFY TCAM PARAMETERS

that is generated only if you omit one of the following INTRO operands at
assembly time:

STARTUP=, LNUNITS=, KEYLEN=, and, if DISK=YES, CPB=.
The response keyword is A=n or DTRACE=n.

The trace table resides in the main storage allocated to the MCP and, therefore, to
get a copy of the table, you must dump your MCP region. If you wish to dump
the subtask trace table to a sequential data set to provide a history of TCAM
activities, you must activate the COMWRITE routine for the subtask trace table
dump by issuing the DEBUG operator command.

control characters operation | operand

F jobname

control chars {MODIFY} [procname.]id},DEBUG =L.IEDQFEI0

Note: COMWRTE=YES must have been specified either at assembly or
INTRO execution time.

This loads (L) the dump routine for subtask trace. If you want to deactivate the
routine, replace the L with D; otherwise, the command is the same. The routine
prints half the table at a time to the sequential data set while the other half is
being filled. Therefore, your most current entries are still in main storage.

Example: Printing the subtask trace table when COMWRITE is used.

//PRINT JOB MSGLEVEL=1

//STEP EXEC PGM=IEDQXB,PARM='STCB'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=COMWRITE,UNIT=2400,DISP=0OLD,*
// LABEL=(,NL), VOL=SER=DUMMY

Ve

The subtask trace table is also printed if no PARM= parameter is specif.ied.

Use the subtask trace to determine what TCAM was doing when it failed. A
subtask trace table must be included with APAR documentation. You should
print the subtask trace for any problem that occurs. To fully utilize the subtask
trace, you should also dump main storage to get the remaining entries in the table.

Using the Subtask Trace: Use the subtask trace, a logged history of internal
resource and data movement in TCAM, to help you diagnose TCAM problems. It
records the flow of all dispatched elements, showing where they go in the TCAM
system and what subtasks work on them.

While not all TCAM functions are logged, you can get a good picture of the flow.
Although you do not need the trace to find a program check address, it can tell
you the data movement preceding the check and which module passed control to
the module that failed.

Also, you can analyze hard waits and loops more closely when you have an
excessive throughput reduction. You can trace loops among modules passing
through the dispatcher and spot unnecessary WAIT conditions caused by poor
resource allocation.

TCAM Diagnostic Aids 119

120

0OS TCAM User's Guide

To begin with, know how to find the trace in main storage and how to definc its
parameters. The formatted trace printed by the IEDQXB utility serves as a good
history, but your current problem is probably still in the main-storage table. This
is usually true in the case of a program check, and in the case of most WAIT
conditions.

The Table in Main Storage: AVT+X‘1A4’ points to the 16-byte header of the
table. If the dump program IEDQFE10 is not in the system, the table follows the
header, which has the format shown in Figure 43.

IEDQFE10 modifies the header and adds prefixes to each half of the table when it
splits the table into halves for its own use. After IEDQFE10 splits the table, each
half has the format shown in Figure 43.

When you look at the trace table in a dump, if you see the C*'STCB’, you know
that IEDQFE1Q is in the system. If not, you see the header as it appears before
calling IEDQFE10.

An example of a formatted subtask-trace table prefix is shown in Figure 44.
The first entry points to either the first or second half of the table.

In Figure 45 the second half of the table is being used, as indicated by the header
pointers. .

AVT

+ X'1A4? + H

OFFSET FORMAT OF THE SUBTASK TRACE TABLE CONTROL BLOCK

> ADDRESS OF THE NEXT ENTRY IN THE TABLE"
4 ADDRESS OF THE FIRST ENTRY IN THE TABLE
8 ADDRESS OF THE LAST ENTRY IN THE TABLE
12 SIZE OF THE TABLE
FORMAT OF A SUBTASK TRACE TABLE ENTRY
OFFSET v
o| PrIORITY OF THE ADDRESS OF THE
DISPATCHED ELEMENT DISPATCHED ELEMENT
4 ENTRY POINT ADDRESS OF
THE DISPATCHED SUBTASK
8 FLAG BYTE OF THE ADDRESS OF THE
DISPATCHED QCB DISPATCHED QCB
12| SUBTASK ENTRY |, hpess OF THE DISPATCHED STCB

CODE (MCPL)

Figure 43. Subtask Trace Table Format

Note: The address of the current entry is a pointer to the location where the
next entry will be placed. Therefore, the latest entry in the table is located
16 bytes before the address contained in the first word of the header.

Contents of an Entry: Each entry in the trace table is 16 bytes of information in

the following format.

— — —ONE WORD — — —

FIRST ENTRY

CURRENT ENTRY

LAST ENTRY

SIZE OF TABLE

C'STCB'

TIME

DATE

CcT AVT ADDRESS

ENTRIES

Pt >
ENTRIES
C'STCB'
TIME
DATE
CcT AVT ADDRESS

LY

Figure 44. Formatted Subtask Trace Table Prefix

Modified Header (16 bytes)

— — Prefix for first half of table (16 bytes)

Each entry is 16 bytes

TCAM Diagnostic Aids

— = Prefix for second half of table (16 bytes)

121

AVT

;E 1
+420(1A4) 0688B0O

-~

r 7T
068860 203A0008 01000650
068880 CC03GS7C C0077348
Q6B8A0 00019888 000198D8
06B8CO E2€E3C32C2 09092046
06BBEQ ECQ6ACD8 00068E3A
068900 E406A124 00042902
068920 ET06ACC8 COO3FB9C
06C820 EOO6AQC8 COO068E3A
06C840 E406A124 00042902
06C860 00039C2C €00429C2
06C880 E406DS6C 00042902
06C8A0 ET06ACC8 0003FBOC
06C8CO E2G6ACC8 COO3FDEO
06C8EQ ECQ6AOC8 O00068E3A

122 OS TCAM User's Guide

+0

priority of the address of the
dispatched element dispatched element

+4 address of the entry point of
the dispatched subtask

+8 flag byte of the address of the
dispatched QCB dispatched QCB

+12 subtask entry » address of the
code (MCPL) dispatched STCB

Priority of the dispatched element: The one-byte relative priority of the element
used by the TCAM dispatcher. Figure 46 is a list of relative priorities. The actual
meaning of the priority field depends on the type of element.

Address of the dispatched element: The main-storage address of the resource
control block (RCB) associated with the dispatched element. The RCB is a
two-word prefix to an element that allows the TCAM dispatcher to determine the
QCB to which an element will be posted. Each element in the TCAM system is
represented by an RCB. An element is an individual part of a system resource
(for instance, a buffer, an LCB, etc.). To determine what type of element is being
dispatched, examine the element. First, check the formatted section of your dump .
to see if it is an LCB. If it is not, it is a buffer if it is located in the buffer pool
area (AVT+X‘384’ points to the start of the buffer pool). If it is neither an LCB
nor a buffer, it could be an ERB (element request block) used to request buffers
for transmitting data. The ERB is X‘4C’ beyond the beginning of the LCB.

Address of the entry point of the dispatched subtask: The entry-point address
of the module that will act on the element.

0€000000
0C039850
0€000000
0071292F
0006A0D8
02039CB8
C903FB90

0006ACD8
02039CB8
0CO039AEQ
02039CB8
C903FB90
1003FDD4
0006A0D8

00000000

0 TABLE

0CO6A0EQD
040429C0
0603FB98

OSTART-\..-vv17wm~
0 OF TRACE [pOO6CDZO 0006C850 C006D7D0 COOO1FS50
SESOGCAEBE—BEECHEIAYEVOCACHE—OECEACED’

PREF

0C06Aué%
04042900
00039C2C
04042900
0603FB898
0603F0DC
0CO6A0EO

TABLE
CURRENT O0CFIRST CICASTEO OCSIZE O *eeecsecesoscsssescscscsceBoncosanct
SURRENT 50cE!RST ogeasvs0 00virewo

E406A124 O(CONTROL SECTION 04C42338
00039C2C 00042902 0CO39AE0 00C39C2C
E406DD60 000424F8 02039C88 040424F6

'x}lE406A124 0004233A 08039C7C 04C42338
[E2E3C3C2]09085761]0071292F] OEC39570]
EQ006D96C 0003FB9C C903FBI0 06C3FB98
00039C2C (0042902 0CO039AEQ 00039C2C
E406DD60 000424F8 02039C88 040424F6
EO006A0D8 00068E3A E406ACD8 OCCEAQEQ
E406A124 C004233A C8039C7C 04042338 *ceeQeeecceeQescolUscscceccccnnene

Figure 45. Second Half of the Subtask Trace Table

Name

| PRINTRQ

PRIFSPCI

PRISBPCI

PRIDSKRQ

PRIACTIV

PRIDKEOB

PRIRECAL
PRIRCQCB
PRIAPERB

PRIEDISP

PRIMHBFR

RIUREQ

'RIAPBFR
RILNEND

RIRCBFR

RIBFRTB

Value

E4

E8

EO

EC

E4

E0

E0

EO

DO

E0

E4

E8

DC

E4

EO

E4

Use in an ERB

to request full buffers

from Disk I/O

to request empty buffers
from buffer request
QCB; to request full
buffers from Disk I/O

to request empty buffers
from buffer request
QCB; to request full
buffers from Disk /O
to request an empty unit
by chaining the ERB on
the buffer return QCB

in tposting ERB to the
activate QCB to request
building an initial
contact program and
EXCP for the line

to enable EOB to recall;
to tpost to EOB Handling
after an EOB error; must
be lower priority than
PRIMHBFR

to request from Disk /O
a copy of the header

to return the ERB to any
routine specified in

LCBRCQCB
to request full buffers

to tpost ERB to itself

on send operations when
an error occurs before
EOM; must be lower
than PRIMHBFR

to have a buffer
processed by MH

to request an empty
unit for insert function
in MH; must be higher
than PRIMHBFR

to tpost a buffer to an
application program

to have Buffer Disposition
finish processing macros
and clean up the line

to return a duplicate
header to a specified
routine

to return a buffer or unit
to the buffer-unit pool

Routines Using

Send Scheduler
Receive Scheduler

Get Scheduler

Put Scheduler

Create an error message
routine

PCI Appendage=-on first
PCl only
Multiple Routing subtask

PCI Appendage=-all
PCls except the first

CPB Cleanup

CPB Cleanup
Buffer Request
Buffer Return

CPB Cleanup
CPB Initialization

All routines requesting
recalled headers
Multiple Routing subtask

CPB Cleanup-after recall
Create an error message
routine

Application program

Buffer Disposition

PCI Appendage

CPB Cleanup

Line End Appendage-
receive, last buffer only

Unit Request

Incoming/Outgoing Message
Delimiter routine

Line End Appendage-send,
last buffer only

CPB Cleanup
Destination Scheduler

Incoming/Outgoing Message
Delimiter routine

PCI Appendage

CPB Cleanup

Destination Scheduler
Multiple Routing subtask

gure 46. TCAM Relative Priorities (Part 1 of 3)

Nome Value
PRIDSKBF EC
PRICOPY EO
PRIDESTQ E4
PRIDKWRT E4
PRIDKSRY EC
PRIDKCNC EO
PRIDKINT EO
PRICKPLN EC
PRIMULTR EO
PRIOPCTL DC
PRIDSPLB E4
PRIONLT DC
PRILAEND E4
PRIMHUNT E8
PRIRELSE EO
PRICPBCL E8
PRICKPT DC
PRILNFRE E8
PRICLSDN 10
PRIAPCKP DC
PRIOPCKP DC
Figure 46

Use in an ERB

to give a unit to
CPB Cleanup

to have a message copied
to a different data set

to put a buffer on a
message queue

to have a full buffer
written on disk

to have a message
flagged serviced

to have a message
canceled in the
message queue

to have a message
intercepted

to tpost the LCB to
Checkpoint requesting
a checkpoint

to tpost the LCB to
the Multiple Router
routine to continue

to tpost an operator
control buffer

to tpost last buffer of
message to buffer dis-
position QCB; must be
lower than any PCI
tpost of an ERB

to request on-line test
to start error processing

to tpost a unit to MH;
must be greater than
PRIMHBFR

to release a subtask
from Time Delay or
Operator Control

to post CPB Cleanup
complete

to request a complete
checkpoint

to free a line; must get
to Destination Scheduler
before line is free

to request closedown;
must be lowest priority

to request an incident
checkpoint

to request an incident
checkpoint

Routines Using

Buffer Return
Destination Scheduler

Incoming/Qutgoing Message
Delimiter routine

Multiple Routing subtask
Create an error message
routine

Destination Scheduler
Buffer Cleanup

Cancel Message

Hold/Release Terminal

routine

Buffer Disposition

Buffer Disposition
TLIST

Message Handling routine
Operator Control
Interface routine

Incoming/Outgoing
Message Delimiter routine

STARTMH subtask
Line End Appendage

Unit Request

Operator Control
Hold/Release Terminal

Disk End Appendage

Reusability=Copy subtask
MCPCLOSE
Time Delay subtask

Buffer Disposition
Put Scheduler
Send Scheduler

Application Program

Operator Control

. TCAM Relative Priorities (Part 2 of 3)

TCAM Diagnostic Aids 123

124

0OS TCAM User’s Guide

Name Valuve Use in an ERB Routines Using
PRILNCL EC to clean up buffers Line End Appendage
and to free a line;
to tpost a line to INEND
Buffer Disposition OUTEND
PRILOGLB EO to tpost the Log LCB LOG Scheduler
to itself
PRISSOLT DC tposted to Operator On-Line Test
Control to request Time Delay
STARTLINE/STOPLINE
to return an element
from the time delay
queve
PRIATTN DC to tpost the attention Attention Handler
element for local
devices
PRISYSDL DC to initiate system delay Operator Control
PRISYSDT D8 to tpost the system delay System Delay
QCB to Time Delay
PRILCBDL 20 to indicate to System Delay subtask

Environment Checkpoint

Environment Checkpoint

that an LCB is on the
System Delay

NOTE: Al EOM (end of message) buffers have DF in the priority field of the
RCB.

Figure 46. TCAM Relative Priorities (Part 3 of 3)

Flag byte of the dispatched QCB: The first byte of the QCB. Sometimes its
contents are meaningless. If the flag byte is C9, the buffer disposition routine is
to be tposted. If, however, this is a destination QCB, these flags indicate which
destination QCB the dispatcher is to use, and which message queues data set is to
receive messages for the destination.

Bit definitions are:

Bits Value Meaning
1,2 X60’ main-storage queues with backup on
‘ nonreusable disk
1,3 X500 main-storage queues with backup on
reusable disk
1 X400’ main-storage-only queues
2 X220 nonreusable disk queues
3 X110 reusable disk queues
6 X102’ this is a QCB
7 X01r stop sending while reusability clears this queue

Address of the dispatched QCB: The address of the queue control block (QCB)
whose first STCB will be activated. A QCB regulates the sequential use of
elements among requesting tasks. Every queue or item waiting for service in the
system has a QCB.

Subtask entry code (MCPL): Using this field, the TCAM dispatcher calculates
the subtask entry point.

N~

Code Meaning

X004 the subtask entry point immediately follows a
2-byte STCB (subtask control block)

X06’ the subtask entry point immediately follows a
4-byte STCB

X‘08’ the subtask entry point immediately follows a
6-byte STCB

X0A’ the subtask entry point immediately follows an
8-byte STCB

If the MCPL value is greater than X‘0A’, the TCAM dispatcher activates a
subtask by using the MCPL field as an index into the AVT subtask branch table at
AVTDISP (AVT+X‘228’). The following values of MCPL cause the dispatcher
to activate the associated subtask.

Code Subtask

X0C leased receive scheduler
X‘OF’ send scheduler

X110 GET scheduler

X112’ PUT scheduler

X114 GET FIFO scheduler
X‘16’ log scheduler

X18’ dial receive scheduler
XA’ buffered terminal scheduler
X1 retrieve scheduler
X‘1E’ local receive scheduler

If the MCPL field is X‘00’, no real elements are currently tposted to the ready
queue. A subtask residing in the dispatcher issues an OS WAIT command.

If the MCPL field is X‘02’, the element has been tposted to a QCB that represents
an attached TCAM task (operator control, checkpoint, or on-line test). The
dispatcher activates a subtask residing in the dispatcher that enqueues the ele-
ment. OS posts the subtask.

Address of the dispatched STCB: The address of the dispatched subtask control
block for the module that will be activated (the module whose entry point is in the
second word of the trace entry).

The TCAM dispatcher places an entry in the subtask trace table immediately
before branching to the routine. Therefore, the entry indicates what is going to be
done to the element. The function has not yet been performed.

The following example of a main-storage subtask trace table points out the normal
flow of a received message, a sent message, and a negative response to polling.
Once you become familiar with this flow, you will find it easier to identify addi-
tional TCAM functions in a table. Checkpoint, application programs, logging, and
multiple routing change the number of entries, but you should always be able to
pick out the basic message flow.

The subtask trace can be used more effectively with a storage dump to allow you
to verify the exact module or element involved in the activity.

Figure 47 (Parts 1-3) shows how to read an entry. The numbers under each field
correspond to the numbers in the following discussion.

TCAM Diagnostic Aids 125

06CACO
06CAEQ
06CB00
06CB20
06CB40
06CB60

060900
060920
260940
060960
060980
06D9A0

0428CC
0428E0
942900
042920
042940
042960

126

EC06DS6C COO3FB9SC CSO3FB9IC 0603FB98
EQ06DS20 00065490 EC06D920 18060928

sTCB-0FC26

E40605€C| 00042902 02039CB8| 04042900
0 €8 000(3)B9 3F,

@0:@08 0004@-050 TJ03FTV4 @uOB.uDC

ECO6ACCB 00068E3A 0C06A0D8 OCO6AOQED

E306D920
E406096C
00039C2C
E406AB20
ECO6AODS
E406A124

0003FDEC
00042334
00042902
000424F8
00068E3A
0004233A

Figure 47. Reading a Subtask Trace

1003FDD4
08039C7C
CO0039AEQ
02039C88
E406ACDS
€8039C7C

0603FDDC
04042338
00C€39C2C
04C424F6
0CO6ACEQ
04042338

Entry (Part 1 of 3)

*eoReeeceleceseoeTeReceoeccoMecse®
¥oeReveeoeeRecsRelUcRececcccsacsooe*
*¥UeResosoeocsecnccscsccscccccsscsce¥

1. E4 is the relative priority. You need more information from the trace before
you know its actual relevance.
2. 06D96C is the address of the RCB (the dispatched element). Go to this
address in the storage dump.

€CCCOCCO C0C00000 0CO00000 00C00C00 000C00C0O 19498916
EOQC6DS20 E0039C2C 18C6D928 20068F94 00001400 10000000
€2000CCC 7FO039BEC 1@€§Q%8.00000000 4006D9CC 0003AS08
00C6ETEO0 €0000202 CcluLuco0l[o0o39CBS [E4B39C2C) 0106ETED
0C02B1C8 51111106 01030408 0SQCB O0ADDRESS OF)00L
0C06DSBC 00039970 0C06D898 OCADDRESS O2NEXT RCB 001

00060918
00000000
0404FBSC
00000000
01580001
0806D9B0

00060518
18C00C00
©C000C00
40060898
600658EA
O0Q6ETEQ

Figure 47. Reading a Subtask Trace Entry (Part 2 of 3)

¥eoesescecsscncscscssnveccseReceRe*
¥eoReovoeeseRecscccccscccseccsccoce®
*Beosesscoscssssces sRevocsecoscnne¥
¥eoXesesoesessecolUccceeXeoooe oQo*
¥eoeHevooeoecoaccceose onvcccenan¥

eoRovcesesQececcceRecessosRoceXe

The RCB is a two-word prefix to an element with the following fields.

+0

key field

address of QCB to which this RCB is tposted

+4

priority

address of next RCB in the chain in which

this TCB is located

To determine what type of element is being dispatched, examine the element.
First, check the formatted section of your dump to see if it is an LCB. If it is
not, it is a buffer if it is located in the buffer-pool area (AVT+X‘384’ points to
the start of the buffer pool). If it is neither an LCB nor a buffer, as in this case,
it could be an ERB (element request block) used to request buffers to transmit
data. The ERB is X‘4C’ beyond the beginning of the LCB. To verify that it is
an ERB, subtract X‘4C’ from the address in this field. Now check the format-
ted section of your dump for this LCB address. In this example,

6D96C
-4C
6D920

6D920 is an LCB address indicating an ERB as the element being dispatched.
3. The entry-point address of the dispatched subtask is 042902. At this address in
storage, you can see which module is about to be activated. Looking in the
right-most column, you see the module identification IEDQKA, the Activate-
I/0 Generator subtask.

ENTRY POINT

0€1B2B 42230007
4C 780 C5B89101
|0400RCEF COOC4TFO
4B20FBBE
41CCF1CC CS55C98BF
92E41004 94FD1014

92C23008B 92083008
6C140711 4300401C
FO1CC9CS5 c4D8C2CL
5€402C34 91402013
DCCCD2C1 205A203E
5C71C00C 47F0BO4E

1299G72¢
07F1430C
10561821
478CFO3E
9101202C
41102020

92203004
AO03907F1
91081008
5860029C
4T80F06E
0AQ098BF

109907FE
00C4233A
4780F022
5860601C
58704014
DQ0C9140

1B009101
08000C01
5821CC0C
45360018
58102C40
20474770

Figure 47. Reading a Subtask Trace Entry (Part 3 of 3)

OS TCAM User's Guide

...0‘.......0.0..'0...'.. l'.....
¥ oeefeccscccee selevccclecccccee®
¥c00000000.IEDQKAccevecssccloccne®
e00ceecee see o00e00ceKeooosesno
¥eelevesceeKesooooooeesOonse voee *
#eUcesoccseseslectccccccccce coee®

TN

. The flag byte of the QCB is meaningless in this example.

. The address of the dispatched QCB is 039CB8. This is the QCB to which the
element is tposted. As you can see, it is the same as the first word in the RCB.

. The MCPL field is 04, which says that the entry point of the subtask immediate-
ly follows the two-byte STCB.

. The address of the STCB for the subtask to be activated is 042900. You now
know enough to understand the priority field. Looking at the list of relative
priorities in Figure 46, you can see that an E4 priority indicates tposting an

ERB to the Activate QCB to request building an initial channel program and
EXCP for the line.

The Formatted Table: The trace table in main storage contains the most current
entries. You may find the formatted trace printed by IEDQXB useful when
intermittent failures require a history of what has been happening in the TCAM

system. Figure 48 shows the printed output. Field headings are:

Subtask trace: The title of the table.

Sequence: A sequential count of the number of tables written on the data set.
If a number is skipped you have lost entries; that is, the table half in main
storage wrapped because COMWRITE was busy and could not write it to the
data set. Prevent this problem by increasing your table size.

AVT address: The address of the AVT (address vector table).

Date/time: The date and time at which the table was placed on the data set.
You can dump selectively using the time.

First type QCB and second type QCB: Not significant, other than telling you
that the right-most 16-byte entry was made first.

Pri: The priority of the dispatched element.

Ele: The address of the dispatched element.

Entry: The address of the entry point of the dispatched subtask.
FI: The flag byte of the dispatched QCB.

QCB: The address of the dispatched QCB.

MI: The subtask entry code (MCPL).

STCB: The address of the dispatched STCB.

Use the translation of the module name to follow the flow of activity. Remember,
however, that these translations are general descriptions of the module activity,
and are sometimes misleading. Do not depend on this translation; go to the
addresses specified to see which module is acting on the element. The translation
helps explain the module activity.

QCB POSTED TO ITSELF indicates an LCB being posted to itself.

ACTIVATE is the Activate-I/O Generator routine.

Using the Table: To further help you understand this trace and its use, a list of
hints of what to look for in determining the cause of the problem follows.

TCAM Diagnostic Aids 127

*#SUBTASK TRACE**
FIRST TYPE u«Cb

‘wCB PCSTED TO [TSELF
AVALLABLE BUFFER

BUFFER RETURN
ACB PCSTED Ty ITSELF
AVAILABLE BUFFER

BUFFtR RETURN
Q08 PUSTEL Ty ITSELF
AVAILABLE BUFRFER

wid PLSTEL TC
ACTIVATE

ITSELF

Qlb FLSTEC TC
ACTIVATE

iTSELF

Gl PCSTEC [TSELF

ACTIVATE '

TG

QLo PCSTEL TG 1TSELF

ACTIVATE

dLd PUSTEL TC ITSELF

ACTIVATE

U ITSeLr

-

<l PLSTEL

128

PRI

EO
E4
co
E4
EC
(X3
(4]
Ea4
[3¥]
€4
co
E£3
EQ
E4
E7
£3
(2]
E4
E7
E3
EC
E4
E7
[
3V
E4
E7
£3
EG
3
L7
E3

[V

OS TCAM User'’s Guide

SEQUENCE- 03 AVT AGERESS— C413F0 - -

ELE ENTRY FL QCL ML® STCo SECOND TYPE aCB PRI ELE ENTAY 20 aep T wil*$ied!
C72CF8 C63B02 E4 0T2CF8 OC C721C0 QCB POSTED : :

C13Tha 847698 OF CA16FC 0 Gadess ACTVATESD TV ITSELF B2 072004 043802 09 9T29f8 9¢ £r2100
C416AC 04TBF2 0O 04156C 0G 0416AC E7 O7T2CF8 04B734 C9 04B728 06 04B730
CEYOLO CATTES 02 0417C6 04 0477E6 BUFFEK KETURN E3 0720F3 04B96C 10 04B9I60 06 048968
C72CF8 Co3BU2 E4 072CF6 OC C72109 QUB POSTEC TG ITSELF E0 OT20F8 063502 00 GT20F8 OC 672100
C12144 G4T62A OB 0416FC 04 a6t AEFEVATE S B4 -OT2144—G4IBF2 G2

G4L6AC C4TBEZ OC G4156C 00 G416AC E7 0720F8 04B734 C9 04B728 06 048730
GESOCG C4T7Eu 02 0417C8 04 04TTE6 BUFFER RETUKN E3 0720F8 04896C L0 04B960 06 048968
CT2UFB C63BLC E4 GT2CF3 CC CTz100 QC6 POSTED TU ITSELF EO 072GF8 0636D2 0C O720F8 0C 072100
C12144 CaTo2A Co 041EFC G4 C47625 ACTIVATE E4 072144 047BF2 02 041738 04 047BFO
C416AC C47BF2 CC 041560 00 0416AC EO 065GB4 04B734 C9 C4B728 06 048730
CE5CH8 C4u96C 10 04BG6C 06 ‘046968 UCB POSTED TU ITSELE -E0-065008 -G63802 £0-065066—0C 065070
GESCER Cb3bD2 Ou 065C68 CC 065070 AVAILABLE BUFFER E4 0650B4 04762A 08 0416FC 04 047628
0ESCB4 04T3FZ U2 041738 04 04ToF0 ACTIVATE 00 0416AC 047BF2 GG 04156C OC 0416AC
C120F8 G43134 C9 04B728 C6 04B73C BUFFER RETUKN E4 C69CCO 0477TEB C2 041708 04 04TTE6
0720F8 C43S0L 1C 04BS6C 06 04BYo8 ACB PUSTED TG ITSELF EO OT20F8 063bD2 E4 O72CF8 OC $72100
C12CF6 C636U2 Ov CT2CF8 CC CT2LU0 AVAILABLE BUFFER k4 CT2144 047624 08 C416FC 04 047628
CT2144 0475k G2 GA1738 ©4 U4TBFO-ACTIVATE 00 0416AC USTBF2 OC 04156000 C4ToAC
GT2CFE C4s734 C9 C4B728 Qo J4b730 BUFFER RETURN E4 065000 0477TE8 02 C417C8 04 G4TTE6
CT20+8 04856C 15.04B96C 06 045968 QCB POSTED TU ITSELF EO GT20F8 C63BD2 E4 072CF8 0C 072100
C120F8 063602 GU OT2CFB OC CT210G AVAILABLE BUFFER E4 072144 04762A 08 0416FC 04 047628
(72144 C4TBF2 C2 CA1T36 G4 047BF0 ACTIVATE 00 0416AC 04THF2 CO 041560 3¢ N416AC
GT2CFB 043734 LY 048725 G6 C4B735 JUFFEK RETURN €4 0090C0 G4T7ES 02 C41708 C4 C4T7E6
CT20F8 CaussoC 1T C4BSoU C6 Cas9od dLS PUSTED T ITSELE £0 OT2CF8 C63BD2 £4 0T2CF8 DL CT2100-
CT2CFB Goloe $C CT2CFb6 CC C721U0 AVAILABLE BUFFER E4 (T2144 G4TE2A Cb C416FC 04 047628
C12144 C4TBF2 o2 C41738 C4 C4Toru ACTIVATE 00 G4l6AC G4TEF2 €O 041560 00 0416AC
CT20F8 C4uT34 CY C4BT24 06 41730 SUFFER RETUKN E4 069000 C477E6 02 G417C8 04 C4TTEG
LT2CF8 Cadyol 10 C4BS6C Co ueiSos QCs PUSTED Tu ITSELE EG O720F8 C63BD2 E4 GT2CF8 C 072100
C120F8 Co3uue Ou CT2CFL CC 72100 AVALILABLE BUFFER E4 CT2144 C4T0ZA 0B C416FC 04 047628
UT2144 Ca78k2 L2 41135 G4 D4T4FC ACTIVATE 00 C416AC GATLF2 0T C41560 0C 0416AC
CT20Ft (43734 C9 C4BT2b 6 C4iT30 BUFFER RETULRA E4 G69CCU C4TTES C2 041708 24 C4T7E6
CT2CHs C4356L 10 C4pSbL Co C4pdd8 ulo PUSTED TC I1SELF £O C720FB (63602 E4 0T2GF8 3¢ £72100
CTeuFS L63u2 o CT2CF0 CGC 72100 AVAILABLE HUFFEK E4 OT21l44 G4TEZA CB C416FC 04 047628

Figure 48. Formatted Subtask Trace Table

10.

Practice reading normal message-flow entries so you can more readily identify
error flows.

Know the dispatching concept, control block linkages, and the data move-
ment initiated by the subtasks and the dispatcher (see the TCAM PLM.)
Learn to recognize the scheduler MCPL fields.

Determine where the flow went wrong. Experience and the PLM will help
here. Always try to associate the trouble with a line. This gives you an LCB
to follow. Find the last time the LCB was shown free, and trace the flow
forward to the failure.

Become familiar with pertinent MCPL fields, QCB addresses, and QCB flags.
Priority fields in a buffer can tell you where the buffer should go.

Determine what negative polling and addressing responses look like. Use
Figure 49 (Parts 1-3) to help diagnose the reason for line failures.

On program checks, the last two or three entries in the trace table will in most
cases give you an idea of what was happening.

The SCB parameter list for the message handler macros tells you which
functional macro routine has control if you get a program check in the mes-
sage handler.

Check the buffer prefix fields for proper disposition of the buffer being
handled at failure.

Identify the immediate entries before a loop or hard wait because they often
lead to the source of the error.

Once you identify the LCB for the failure being traced by the subtask trace, you
can note the interrupts and associate the line 1/O entries. You can associate both
line I/O and buffer traces with the subtask entries using the LCB and line information.
Doing this, you can correlate the entire TCAM line activity.

- Receive Operation -

r

MNOOOOV—L —O-F
—mnununononOo
ONNNL OO <TO
AT LA DA LALLM AR Y]

[eolelslololololelole)]

F OO OOO©
Mmoo
0N FLINON0O
0NN NN OO NNO
NN NN M NO
[elololelo]elo]ele o]
FTOOOLANNNNO
WOOOOOWOOO

<C N 0NN OO\OONCN
NANINO—L —O®©

LoNNL.OOO<TM~
o oMo
[elolololelolelolele]
[elelelelolelelelolo)
[ololelalelelalelele)

TITIFTTOOOOOW
QOO0 00OVO-TM
oMNNNOOONVO
OINNINOOOANLNO
O MNMNNLNLNLNN O
[olelololelolelelelo]
SJOCOTFTIFF0O
wooOooWIIuILIL

OO WPOOVPVOVO
FNONOQORN™NVO
or~O—ootaarsrs
VOLCOOOXIOO
oMM onn g
[elolelelelelolelelw)
O3 3OO0
COOO0OCOOOOO

VOOFTOOOITO®
N—FONONNOL
oVOVNLLOO\O-F\O
VNNINOODNOO
oMo o I o
[elololelelelalelew)]
oNNIT L OYNANOO
OCOoQUWOLYWOLO—

NNNCOOLTNO T

[alel=lololalelalola)
L —

81.71...:4000600_1

-

C— Saome Entry Type Denoting End of a Receive Operation ——j

[v
(ool o] AUJOI.WOI.-.BOOOI...IJ. O\O\O O
no— SN0V OOL_COW O——r~
—umnmn o~y TOonmn oneam
OoNO V< inooonmn (@] S1ST,)
Mo Wlnmonenon o ronmnoen oo
[elele] (o) [olele]o]alelolele] [alelale
SO OlTOITOWVOVOOO O3
[e]lale) [w][elelelalole]lolo]o)] [eele o]
=400 0|+ 00O OO ™
amnw Mmoo oomnn Quiumn
mnn oot FFFOST Edh =}
mnunmn VNN oo o tnNIN onnNY
Lakalal WMo ronenen SN
[]e]e] (o) [e]lolelo]le]e)o]olo] OO0
OON S NOL.ONOTNO O YN S
(e]e] o] wWooOO0LL—00 ooow
<N NINNN 0L O W NN €000 <T
mnoN— ONNO—OOLL NN O—=—tn
—r~m o~~~ OO0 Sonenon
[B1E]S) NlcOLOLooO» [=1SIETN
ocnenen wnlnenenon g+ MO O Sononn
[=le]w] [ellolelole]lolelelele] [e]elo)e]
[=]e]] [allolelololelelela]lo] o000
[lele] (ellelo]lelaloelelela]) oOoOO0O
30O 0|FFTOTOITOIT S oOOoOOo
COCON N |00 CO 6O 00 GO 0O ~F CO CO S -Fom
ownm olonunnNoL NN LL OO
N Yoo vonn [B1ET=1VeY
Nt woMmunnmnonMnmMm LNLNLNO
OO0 1 OOOOCOOO0O0OO [elele]
O g OTOITOFTOITOO o3 O
wow £ wowowwuoo Ll Lty
°
a.
o)
- c
OCO® o OCODVWVW-TOVOO 9 [eleNale]
TNO 2 OhNNO—ONOMO oN~N—O
or~st ¢ Noar~comnuni~a—oO = ar~n~No
VOO 2 -olcvoconahivas § <wsuow
oM @ N O NN O
OOO © (o] [o]e]olalelololelo R [ealelolele]
OO0 > VWIIIOITOO0T ¢ SO0
[e]ele] ..m (ol lolelelaloelelylele] &e [elelelele]
o 1
L
VOO Z OO TORO OTOWw
MN—O | Lm—ennen Ot WM
OoO0-T VIOWVLLWNTFOO—\O WVWOINOO
womno olotn VNNV LN NN OO
oM gommnmnononmnaron N3O
[=]e]o] [elleololelelelololelo] [ele ool o]
OoONOY OolONLNONNON LINONNO O
ooV b (lelolololebyjel o] WOOOIO
[=a)
NNO S|lcNoomNNN N <TNN O
N ojnNW—ONTMO oN~N—0oo
o~ N~~~ —O0 wnarrMm~o
~NOO o~ oON<TMNO<T L<ILICOOM
nen S Fonomng o Mo i
(e lele) OIOOCOCOOCOOO WOOoOOOO
(o] e] en] [olleleolelolelelele]e] ZTO0000
(o] le) O|COOCOOOOCOO <<OOOO0O
(%)
[oo Joo ©OloTOoOOIFTTOOO [elelalelcel.]
cnoom NN 00O 0T << oaNMmmMm
oo ooounonNoL.LL\O FOVNMOO
\O\O\O whovdhionvoown OO \OO
NejYel¥el whovununnonmnm N NNNO\O
(o] e e OlOO0OCOOOOOO [eolelalelel el
o~ NOFFTTOOTO OLTNO
i (O8] (FAIRETENTIN] YN PN Ty Y] Wi ruitlug
=z
o~
QOO [ellelelelelelelolo) o] [=lelolale)
o~ V|O<CLWON T OO0 OIONT
MM onjoneneaen o SFnnn
[SIS]S] S [SISISISTSISTE TS] LLLLO
nunmn wntnunninnmnnmnmn mnnunnwn
[elale] (o) (eleleele]elolo]] [=]lolelale)

Figure 49. A Receive, a Negative Response to Polling, and a Send Operation (Part 1 of 3)

129

TCAM Diagnostic Aids

RECEIVE OPERATION FROM A TERMINAL

LCB tposted to itself is the beginning of a Receive operation. First word is the LCB
as an element, Third word is the LCB as the QCB. MCPL = 0C.

. ERB in LCB is tposted to Buffer Request. Fourth word is the subtask IEDQGA address.

GA tposts the ERB to Activate, IEDQKA.

KA started the line. Return to the dispatcher found nothing on the ready queve.
WAIT issued. MCPL = 00.

CPB Cleanup QCB tposted to itself. QCB is on the queve by Disk End

Appendage for a previous open. 1/O interrupt for Disk End Appendage gave
dispatcher control.

IGGOI9RC for the previous disk open started disk |/O. With no work yet to do for
the receive, the CPB Cleanup is dispatched. The dispatcher, when it next gains
control, issues a WAIT again. Data is still filling the buffer for the Receive.

Result of first PCl interrupt. Request for BUFMAX. EB8 priority in ERB means ERB
tposted to GA for first PCl request,

WAIT after PCl service. Line now filling the last of the buffer to go on to the next
or finishing last of the message.

Buffer has been tposted to EOB/ETB IEDQBT subtask on the STARTMH QCB.
Some form of user option specified in STARTMH macro.

The buffer is bypassed to IEDQAA by the dispatcher,

All EOM buffers have 'DF' in the priority field of the RCB. After INHDR and
INBUF processing, the buffer is tposted to Buffer Disposition, IEDQBD.

BD tposts any unused buffers to Buffer Return, IEDQGB. This would be the extra
buffer gotten by the PCl interrupt.

BD tposts the message buffer to the Destination QCB, QCB flag =62, This shows
main-storage queues with nonreusable disk backup.

Send Scheduler bypasses control to the Destination Scheduler by the dispatcher
entry point DSPBYPAS.

Destination Scheduler (IEDQHM) tposts the buffer to CPB Initialization, IEDQFA.
FA swaps the buffer with the CPB unit. CPB unit is returned to the buffer-unit pool

by being tposted to IEDQGB.
EXCP is done to write on the disk queuve.

Low=priority ERB on the ready queue for Buffer Disposition to process INMSG macros.

This is done after FA starts the Disk 1/O to utilize the time that the channel is
writing on disk queue.

CPB Cleanup QCB tposted to itself. Done by Disk End Appendage.

INEND macro signals BD to tpost the LCB to BD's second entry point: E3 in
priority field of LCB.

IEDQ@BDO2 entry point of BD will tpost the LCB to itself to signify the end of receive.

Line is free,

E0066038 00057082 00066038 0C066040

E4066084 0003CI5A ELO355D4 04O3Ci58
EL066084 0003C722 02035610 0403C720
00035584 0003C722 00035438 00035584

EB035640 0003AD0O2 02035640 0403AD0O
00035584 000453A8 00035438 00035584

8066084 0003CI5A ELO355D4 0403CI58
00035584 00035423 00035438 00035584

ELO5D000 O00O04OBEO OF036F38 0A0408D8

NOTE: If this is a one-buffer message, Line End Appendage tposts
the buffer to STARTMH QCB; otherwise, PCl would tpost
the buffer when handling subsequent PCI interrupts.

E4O5D000 0003F962 OF036F38 0L40O3F960

DFO5D000 oOOO4O4CC C90LOLXCO 060L0LCS

NOTE: |EDQBD has 2 entry points, If C9 is in the QCB address,
the buffers are being processed by the first entry point

code of IEDQBD.

ELO5D060 0003C318 020355E0 0403C316

EL05D000 00057B5A 62038870 OQE038B78

NOTE: The Send Scheduler is the first STCB in the STCB chain,
signifying this destination awaits a full message.

E405D000 0003DCF6 62038B70 0803DCFO

E405D000 0003A772 02035634 0LO3A770
E4059580 0003C318 020355E0 0403C316

EQ066084 000404CC C90LO4CO 0604OLCB

E8035640 0003AD02 620356h0 0403AD0O
E3066038 00040704 100406F8 06040700

E0066038 00057082 00066038 0066040

Figure 49. A Receive, A Negative Response to Polling, and a Send Operation (Part 2 of 3)

130 OS TCAM User’s Guide

NEGATIVE RESPONSE TO POLLING
The LCB is tposted to itself signifying that the line is free.

LCB Receive Scheduler passes the ERB to Buffer management, IEDQGA, to request
buffers.

IEDQGA gets buffers, completes them, and tposts the ERB to Activate, IEDQKA,
to poll the line.

WAIT issued by the dispatcher = waiting for an I/O interrupt. You may not see
this if heavy line traffic. Only one line in this example.

Line End tposts the LCB to Buffer Disposition on a negative response to polling.
E7 priority in LCB equals a negative response situation.

BD will free buffers by tposting the buffer to GB. This will only happen at the end
of the invitation list if this is a multipoint line.

BD will branch to do INMSG macro processing. The parameter list in the SCB will

have the macros that are used in INMSG processing. At INEND the LCB is tposted
to BD for finishing the line activity.

BD will tpost the LCB to itself. This designates that the line is again free.

SEND OPERATION TO A TERMINAL
Receive Scheduler in LCB tposted to itself.
Receive Scheduler gives control to the Send Scheduler by DSPBYPAS.

Send Scheduler tposts the ERB to CPB Initialization, IEDQFA, for Disk I/O to
retrieve message from the queue. E4 in ERB is an initial request for a Send.

FA tposts the ERB with the count to IEDQKA, Message is read from the core queue.

Activate, IEDQKA, starts addressing the line. A SIO is done with a Write Idle loop.

Wait on same interrupt == either positive response to addressing or disk ending.

Line End on positive response to addressing tposts buffer(s) filled by FA to the
STARTMH QCB. IEDQBT EOB/ETB is the first subtask in the chain, as in receive
open, indicates user logical error checking.

BT bypasses to IEDQAA, which processes OUTHDR and OUTBUF macros. BALs to
Buffer Association for CCW building. Not seen in trace as it does not go through
dispatcher.

Wait on buffer to finish being sent to the line.

Buffer tposted by Line End Appendage to perform OUTMSG processing. Buffer has

been sent to line and line interrupt has occurred. C9 signals EOM buffer.

NOTE:
PCI interrupt would occur if coded but is effective NOP on send if a one-
buffer message or if initial request has enough buffers assigned to hold all
the message. PCl can free any previously sent buffers but will not get any
more if this is the case as in this send operation.

At OUTEND BD will tpost the buffer to FA to write the message serviced flag in
the queuved record.
EC in priority field is EOM buffer to be marked.

At OUTEND, BD will also tpost the LCB to its second entry point to perform line-
freeing activity.

LCB is tposted to itself with Send Scheduler first in the subtask chain. The next
message on this queuve would be sent if any more were queued. When no more
messages, the Send Scheduler will bypass to the Receive Scheduler to

poll the line. This is a CPRI = E situation.

LCB tposted to itself with the Receive Scheduler done by DSPBYPAS,

E0066038 00057082 00066038 0C066040
E4066084 0003CI5A ELO355D4 0403C158

E4066084 0003C722 02035610 0403C720
00035584 0003C722 00035438 00035584
E7066038 000404CC C9040LCO 060404C8
E405CB20 0003C318 020355E0 0403C316

E3066038 00040704 100406F8 06040700

NOTE: No actual INMSG processing is done. Control is passed
through the macros to INEND.

E0066038 00057082 00066038 0C066040

E0066038 00057082 E4066038 0C066040

E0066038 00057B5A 00066038 0E038B78

E4066084 0003A772 02035634 0403A770

NOTE: If no core queuing, FA would have done a SIO by EXCP
Driver to get the message from the disk queue and Disk
End Appendage would tpost the CPB Cleanup QCB to

itself. Core queuing with disk backup is used in this
example, thus no SIO.

E4066084 0003C722 02035610 0403C720
00035584 0003C722 00035438 00035584
E4059580 000408EQ0 OF036F38 0A0408D8

E4059580 0003F962 O0OF036F38 0403F960

00035584 0003C318 00035438 00035584
EL059580 000404CC (C90404CO 060404C8

EC059580 0003A772 02035634 0403A770

E3066038 00040704 [00406F8 06040700

E0066038 00057B5A EL4066038 0E038B78

E0066038 00057082 00066038 0QC066040

Figure 49. A Receive, a Negative Response to Polling, and a Send Operation (Part 3 of 3)

TCAM Diagnostic Aids 131

Buffer Trace

132

OS TCAM User’s Guide

The buffer trace dumps TCAM buffer contents and status to a sequential data set.
You can only trace buffers for a line being traced by the line I/O interrupt trace.

Activating the Trace: Whether this trace is available in your system depends on
how you design your MCP. To include it, code on the INTRO macro instruction
the operand COMWRTE=YES. The default is COMWRTE=NO. Include the
operand at assembly time, or at INTRO execution time in response to the message

. IEDOO2A SPECIFY TCAM PARAMETERS

that is generated only if you omit one of the following INTRO operands at
assembly time: '

STARTUP=, LNUNITS=, KEYLEN=, and, if DISK=YES, CPB=.

The response keyword is G= or COMWRTE=. If you specify YES, include a DD
statement in your MCP execution deck to create the COMWRITE data set. You
must also specify a positive value for the TRACE= operand of the INTRO macro,
either at assembly or INTRO execution time.

The trace table is internal to COMWRITE (an attached task), therefore, a dump
of your MCP region does not contain the buffer trace table. The only way you
can obtain the output of the buffer-trace table dump is to use the utility COMED-
IT IEDQXB). Activate the Buffer Trace routine by issuing the DEBUG operator
command.

control characters | operation | operand

control chars {MODIFY} {[procname.]id} ,DEBUG=L,IEDQFE30
F jobname

This loads (I.) the dump routine for the buffer trace. If you want to deactivate the
routine, replace the L with D; otherwise, the command is the same.

Example: Printing the buffer trace

//PRINT JOB MSGLEVEL=1

//STEP EXEC PGM=IEDQXB,PARM="'BUFF"

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=COMWRITE,UNIT=2400,DISP=OLD), *
// LABEL=(,NL), VOL=SER=DUMMY

/*

The buffer trace table is also printed when no PARM= parameter is specified.

Use the buffer trace to learn the status of a message as STARTMH receives it,
both incoming and outgoing. This helps you determine where your problem is,
since you know the status of the message before you do any processing (trouble in
transmission) and the status after incoming processing (trouble in your message
handler). Dump the buffer trace for all data-oriented problems, such as lost,
erroneous, or extraneous data. Dump it also for all line or line-oriented problems.

Using the Buffer Trace: The TCAM buffer trace table records buffer contents and
status. Use this table to trace a message through your message handler. TCAM

.places an entry in the table as soon as it posts the buffer to STARTMH. Both

header and text buffers are posted.

TCAM places an entry for an input buffer in the table before it does any message
handling. Therefore, the buffer contents are in a hexadecimal format that repre-
sents the line code of the originating terminal. Buffer contents include, in front of
message data, the buffer prefix and the number of bytes you reserved in the
RESERVE= operand of the line group DCB macro. Each trace entry is only 96
bytes; therefore, if you have many reserve characters, the entry includes little or
no message data.

The buffer prefix contains only the number of units in the buffer, the address of
the LCB of the originating terminal, the status byte, and the amount of data in the
buffer. TCAM fills in the remainder of the prefix during message processing.

By examining the input-buffer trace entry, you can learn the status of the buffer
before any message handling. If you find an error, you have a problem either in
the originating terminal or on the line over which the message was transmitted (a
probable hardware error).

TCAM places an entry for an output buffer in the table after incoming message
processing is complete and before any output processing. The buffer is already on
the queue for the destination terminal. If you find an error in the trace entry, you
have a problem either in the incoming subgroup of your message handler or in the
queuing activity of TCAM (a probable software error).

Format of an Entry: The 96-byte buffer trace entry has the following format:

0 4 8 12 13 14 15

Buffer SCB Error CSW Sense | IOB | IOB | ERB
Address | Flags Byte | Flagl | Flag3 | Status

LCB Line Buffer Prefix
Status Address | and Data

16 18 20 : 95

Buffer address: The address of the buffer in main storage. The address of the
input buffer and the output buffer may not be identical because of TCAM
queuing. For example, if you send a message to a station with disk queuing,
TCAM places the input buffer on the disk, and frees the buffer in main storage.
When the buffer is ready to send to the destination, TCAM brings a copy of the
buffer contents back into main storage to process in the outgoing message
handler. This copy will probably not be in the same main-storage location as
the input buffer.

SCB error flags: The first four bytes of the message error record assigned to
the message.

CSW: The last half of the channel status word. It includes the status and
count; each is two bytes. The two status bytes identify conditions in the device
and channel. Bits 0 through 7 indicate conditions detected by the device or
control unit. Bits 8 through 15 indicate conditions associated with the subchan-
nel.

TCAM Diagnostic Aids 133

Bit Meaning Bit Meaning

0 attention 8 program-controlled
interruption

1 status modifier 9 incorrect length

2 “control unitend 10 program check ’

3 busy 11 protection check

4 channel end 12 channel data check

5 device end 13 channel control check

6 unit check 14 interface control check

7 unit exception 15 chaining check

The two count bytes are the residual count for the last CCW used. See
Principles of Operation, GA22-6821, for a complete discussion of the CSW

and its bit settings.

Sense byte: For a description of the contents of the sense byte, see the compo-
nent description publication for the transmission control unit that you are using.

IOB flag 1: The flag byte in the IOB with the following meanings:

Bits
00..
01......
10.. ...
11.. ...

.
.1
W
.1,
....... 0
....... 1

Meaning

no chaining

command chaining

data chaining

both command and data chaining

error routine in control

device is to be repositioned

cyclic redundancy check (CRC) needed - tape only
exceptional condition. After the error routine
returns and this bit is on, the error is permanent
IOB unrelated flag

start

restart

IOB flag 3: The I/O Supervisor routine flag byte. It is device dependent.
See the /O Supervisor PLM, for a description of this byte.

ERB status: The element request block (ERB) status byte. The ERBisa
control area used to request buffers for a line group.

Bit Value
0 X80’
1 X440’
2 X220’
3 X110’
4 X08’
5 X004’
6 X022
7 X01’

Meaning

end of initiate mode

end of message read from disk

logical read error

ERB is waiting for buffers

can never be set—distinguishes buffer from ERB
error on send side

disk request is complete (temporary)

delink switch. ERB is not tposted, but

is eligible to be tposted

LCB status: A two-byte field containing the status of the LCB.

Bit Value
0 X80’
1 x40

134 OS TCAM User’s Guide

Meaning

recall is being performed
line is in control mode or this is the
first BSC output conversational block

N

NN AW

X220

X100
X08’
X004’
X‘02’
Xor

If bits 5, 6, and 7

8

10

11

12
13
14
15

X80’

XTF

X40
X‘BF’

X220
X‘DF’

X110

X008’
X04’
X002’
Xor

non-immediate operator control operation
is in progress

receiving an initiate-mode message
continue or reset operation in progress
line is free

line is receiving

line is sending

are off, the line is stopped.

I/0 trace is active for this line or the

line is in lock mode

mask to specify the I/0 trace is not

active for this line

MSGGEN or start-up message

mask to specify that this is not a MSGGEN
or start-up message

EOT from a buffered terminal, no EOM
mask to specify a regular EOM if not EOT
from a buffered terminal

send priority switch set by the send
scheduler

negative response to polling

line is binary synchronous (BSC)

this is a dial LCB

a response needs to be sent to the line

Line address: The hardware address of the line over which the message was
transmitted.

Buffer prefix and data: The remaining 76 bytes of the trace entry contain the
buffer prefix, the reserved space you requested in the RESERVE= operand of
the line group DCB macro, and the actual message data. Figure 50 shows the
format of the buffer prefix. The bit definitions for the status byte

(PRFSTAT1) are:

Value
X80’
X440
X220’
X110’
X‘08’
X‘'04’
X‘02’
Xor’
X000

Meaning

message has been canceled

this buffer contains an error message
this message is being held

this is a TSO buffer

this is a duplicate-header buffer
SETEOF was executed

this is not the last buffer of the message
this is not the first buffer of the message
there is only one buffer in this message

The Formatted Table: Figure 51 shows the buffer trace as formatted by the utility
program IEDQXB. The meaning of each field follows. Figure 50, a buffer prefix,
is for your reference.

Buffer trace: The title of the dump.

TCAM Diagnostic Aids 135

9¢1

opiny s J3sn) WVIL SO

Xya1d 12ng vV ‘0§ 210514

Buffer Prefix

First buffer of a message:

Offset
/] 1 4 1) 8 12 (C) 13(D) 16 (10 18(12) 20 (14) 21 (15) 24 (18} 26 (1A) 29 (10} 32(20) 351(23) 38(26) 40 (28)
Key QCB address] Priority Link field Link to Number LCB Source Size 9' Status Pointer to Scan Pointer to Pointer Pointer Queue-back | Input Destination
PRFKEY |PRFQCBA | PRFPRI PRFLINK next of units | address | offset data in byte additiona! | pointer | next buffer to the 1o the chain of sequence | offset
unit and in this in the this records on offset of this first first the first number |in the
or TIC CCW| buffer Termname| buffer disk message if unitof | buffer butfers of Termname
or Next or cew Table PRFXTRA not last the of the messages Table
address count or to the buffer current next
CCW oP 10 be ccw Unused current PRFNTXT buffer message
Code transferred flags record in or text queue-
main storage back chain if
last buffer
PRFOPCDE | PRFIOADR [PRFFLAGS PRFCOUNT|PRFTIC | PRFNBUNT|PRFLCB|PRFSRCE |PRFSIZE | PRFSTAT1| PRFCORE [PRFSCAN| PRFTQBCK |PRFCRCD|PRFNHDRIPRFHQBCK|PRFISEQ| PRFDEST
RCB — First or 30-byte Buffer Prefix ol
The first 12 bytes are not placed on the
queue for the message queues data set.
o 12 (C) 42 (2A)
Unit control area First buffer prefix Start of the message header or data
PRFSUNIT PRFSHDR
Subsequent buffer of a message:
Offset
0 1 4 5 8 12(C) 13(D) 16(10) 18(12) 20(14) 21 (15) 24 (18) 26 (1A) 29 (10) 32(20)
Key QCB address| Priority Link field Lirnk to Number tcs Source Size of Status Pointer to Scan Pointer to Pointer Pointer
PRFKEY |PRFQCBA PRFPR! PRFLINK next of units address |offset data in byte additional pointer next buffer to the 10 the
unit and in this in the this records on offset of this first first
or TIC CCW] buffer Termname| buffer disk message if unit of buffer
or Next or Table PRFXTRA not last the of the
address ccw or to the buffer current | current
CCWOP |tobe ccw Unused count current PRENTXT buffer message
Code transferred flags record in or text queue-
main storage back chain if
last buffer
PRFOPCDE |PRFIOADR |PRFFLAGS PRFCOUNT|PRFTIC |[PRFNBUNT|PRFLCB|PRFSRCE | PRFSIZE|PRFSTAT1|PRFCORE |[PRFSCAN| PRFTQBCK |PRFCRCK[PRFCHDR
+¢—————————RCB ;{ i Subsequent or 23-byte Butfer Prefix
The first 12 bytes are not placed on the
queue for the message queues data set.
0 12(C) 35 (23)
Unit control area Subsequent buffer prefix Continuation of message header or start or
continuation of message data
PRFSUNIT PRFESTXT

**BUFFER TRACE'*

START OF BUFFER PREFIX

SEQUENCE~- Q00001 F1 DATE- 71.292 TIME- 09.07.59
. e ® O @ @ @

INPUT IO(‘GECDOCI 0000T000| 0040004F| |O*m°bll IOZBCDOISI 02”77022] 0000005 9] 00ic00000 SPACE RESERVED BY eecscessccec¥
BUFFER 0000C00C 00000000 06DA6000 00000000 _0018000C 90909001 O1A6ETE2 C901D2A9 RESERVE = OPERAND ONDCBecee o XSIoKe*
CACAF3CA EE[010190 900L2FO0L 70293167 45010201 6B2A6B52 31016B2A 6B523101 *ee3eeesesasccccccccsssosssocssec?

E4CECBBC 00000000 00004N0N ANC2ANLY NIANNNIT 02064268 00120059 OB06DEEC *UseessesseseseBoossoscccsacssccss®

4DCFO00C 0006DEEC 06DEESTART, OF MESSAGE DATA) 90909001 O1AGETE2 CICLID2A9 #eesscesssssacceccsasssccesXSIeKo®

CAE740CE E4EBC3D2 40F140F0 F94BFOF7 4BF2F24C CSES5C5D9 EB840CSES C509E840 #.X HUYCK 1 09.07.22 EVERY EVERY *

E406CE20 00000000 00000000 00C20041 01860012 0206A1AC 00120059 08C6DACO *UsecsssscocssBoocscssasssccscone®

4DGFC00C 0006DACC 06DACO00 00000001 0C04000C 90909001 O1A6ETE2 CICLL2A9 *ecesevesscscesscscccscacsesXSIoKok

CAE140CE E4EBC3D2 40F140F0 F94BFOF7 4BF2F240 CSESCSD9 EB40CSES CS509E840 #.X HUYCK 1 09.07.22 EVERY EVERY *

E4C¢CBBO 000000C0 00000000 00C20041 01800(”START OF BUFFER PREFIXCBC6E6CO *UeeesococccsoBassscsasccnrsaaaale®

4DCECCOC 0004GE6CO 06E6CO00 00000001 000BOKOC 90909001 OLA6EZE2 CICLD2A9 ¥eecoveNecWesoosssvovoooosaXSIaKo®

cae(ece E4E@1302 40F(R)OF0 @WOBEXD) @)@ (DER)DS (3)0C(@)5 (5)CIEB40 *.X HUYCK 1 09.07.22 EVERY EVERY *

ouTPUT —>{E40ECE20| 00000000 00000000] |00IC200K1] [C180j0012] 02106A1A0) 00120C59) OBHCOET20. *UseesossssocsBeoosrcsscasssaceaXe®

BUFFER @Muc FlCO0C

0006E720

C6E72C00

0000000 0004000C 90909001 O1A6ETE2 C9G1C2A9 RESERVE BYTES e

eeXSlaKe*

EAEBCBDZ

& 40ce
’s*rAnT or MESSAGE { DATA S

40F 40F0

F94BFOF7 7)2F240 C5E5C5D9 EB840CSE5 C5D9E840 *eX HUYCK 1 09.07
00C60001 02800015 02077058 00000677 00CQOCOC *ee

EVERY EVERY =

csecscse®

ococu v0 00000000 0018000C 5C5C5C40 40E3C3C1 D440D9E4 *eeeee TCAM RU*
D5CEC905 C740405¢ 5Co12F0L 70293167 45010401 49625231 014A3167 01622646 *NNING ce*
E4CEE6CO 000000€0 COCOCOCO 00C20041 01800012 0206A1A0 00120C77 O8C6CACO *UeWeoseosocoeBas B ¢
SBOFOO0C 0006DACC C6DACCOO0 00000002 0004000C 5C5C5C4C 40E3C2CL D440CSE4 *eecvevssscscsscscsacsss TCAM RU#
DSE740C8 E4EBC3D2 4CF240F0 F94BFOF7 4BF4F74C D4C1D9ES 40DSEBC3 40CLE3D3 *NX HUYCK 2 0940747 MARY NYC' ATL*
E4CEDEEC 00000000 00000000 00C20041 01800017 0206A268 00120077 08C6ET20 *UeceoscssosseBoocscccncescaccaXe®
SBOFCQOC 0006E720 06E72000 000000G2 O00BCO0O 5C5CS5C4C 40E3C3C1 D44ODYES #eeeseeXooXeoooosooossss TCAM RU*
DSE740C8 E4EBC3D2 40F240F0 F94BFOF7 4BF4F740 D4C1D9ES 40DSEBC3 40C1E3D3 *NX HUYCK 2 09.07+47 MARY NYC ATL*
CCCEEL20 00000000 00000000 00C20041 01800015 02077058 00120059 GBC6DBED *eccecscocasssBoscocssscoscccscac®
4DOFOCOC 0006DBEO 06DBEOOO 00000001 0012C000 90909C01 OlAGETE2 CICID2A9 *eesevecsccoccccscccossssse eXSIaKe*
CAE740C8 E4EBC3D2 40F140F0 F94BFOF7 4BF2F240 C5E5C5D9 E840CSES5S CSCOEB40 #oX HUYCK 1 09.07.22 EVERY EVERY *
CCOEE120 00000000 00000000 00C20041 01800015 02077058 00120059 08CEDFAD %eeecsececocosBooscacsssosccsocne®
4DOFCO0C 0006DFAO C6DFA0O0 Q00COCO1 0018000C 90909001 O1AGETE2 CIC1D2A9 *ececsssccccesssscecssssesaXSIaKek
CAE740C8 E4E8C3D2 40F140F0 F94BFOF7 4BF2F240 CSES5CSDS E840CSES CSCOEB40 *eX HUYCK 1 09.07.22 EVERY EVERY *
Figure 51. Formatted Buffer Trace

Sequence: A sequential count of the number of buffer trace tables printed. It is
incremented by one each time a table is filled. If a number is skipped, you have
lost records. Once a table is filled, the buffer trace.dump routine increments

the sequence count and gives the table to COMWRITE for writing. If this
routine is busy, the table wraps, and entries are lost. The sequence field shows
this internal wrapping.

Buff1: The first of the two trace tables is being dumped. This field alternates
between BUFF1 and BUFF2. The buffer-trace dump routine fills one of the
tables while the other is being placed on the data set.

Time and date field: The time and date the trace table was placed on the data
set.

Input buffer:

1.
2.
3.

Main-storage address is 06DD00.

No error bits are on in the message error record.

The CSW control unit status (0D40) is channel end, device end, unit
exception, and a residual count X‘4F’ or 79 bytes.

The sense byte for the control unit is 00.

IOB FLAGI is C6, indicating both command and data chaining and an
exceptional condition (permanent error).

IOB FLAGS3 contains no information.

ERB status is 01. The ERB is not tposted but is eligible to be tposted.
LCB status is 0280. The line is receiving and the 1/0 trace is active for
this line.

The originating terminal is on line 0015.

The next 30 bytes are the buffer prefix. It contains the following
information.

1. Two units are in the buffer.

2. The LCB address for the originating station in 077058.

3. The size of the data in the buffer is X‘59’, or 89 bytes.

4. The status byte contains 00, indicating that only one buffer is in this
message.

On the DCB for this line, the RESERVE= operand has a value of 24. There-
fore, the next 24 bytes are reserved, and at present contain no valid data.

TCAM Diagnostic Aids 137

Cross-Reference Table

138

OS TCAM User’s Guide

The message is in line code. The terminal entering the message is a 1050. By
examining the line code chart for the 1050 terminal in the TCAM ’
Programmer’s Guide, you can translate the message contents.

Byte Translation
2F X

01 space

70
29
31
67
45
etc.

ra<co

Output buffer: There are several entries for output buffers, since one of the
destinations in the input buffer is a distribution list. The output buffers are
easy to find since they are translated into EBCDIC. This example shows one of
the output buffer entries.

1.

NV AW

8.

9.

The main-storage address for the output buffer to this terminal is 6DE20.
It is not the same as the input buffer location.

. No SCB error bit flags are set, so the message is still correct.

. There is no CSW information.

. The sense byte for the control unit is 00.

. IOB FLAGTI1 is C2, indicating both command and data chaining.

. IOB FLAG?3 is 00.

. The ERB status is 41, indicating that end of message was read from disk

and that the ERB is not tposted but is eligible to be tposted.

The LCB status is 0180, indicating that the line is receiving and that an
I/0 trace is active for this line.

The address of the receiving terminal is 0012.

The next 30 bytes are the buffer prefix, which contains the following informa-

tion.

1

W

. Two units are in the buffer.
2.
3.

The LCB address for the receiving terminal is 06 A1AO0.
Alphabetically, the originating terminal is the eighteenth terminal in the
termname table (HUYCK).

. The size of the data in the buffer is X‘59’, or 89 bytes.
. The status is 08, indicating that this is a duplicate-header buffer.
. The scan pointer is located at X‘4D’ from the beginning of the prefix.

The X‘OF’ in the scan pointer field indicates that 15 reserve bytes are still
left in the buffer. Nine of the original 24 reserve bytes were used to insert
the time.

. Alphabetically, the receiving terminal is the fourth terminal in the term-

name table.

The next 15 bytes are the reserve bytes; they contain no valid data. Following
the reserve bytes is the EBCDIC translation of the message contents.

The TCAM cross-reference table contains the locations of all opened lines in your
system and pointers to the major control blocks for each line. A formatted listing
of this table is not available. If you include the table in your system, entries are
created in it for each open line. Use it primarily as a quick reference, after system
failure, to locate control blocks in a TCAM dump.

The TCAM cross-reference table is a convenient way to locate, in a dump,
information for each open line. TCAM builds the cross-reference table if you
code a positive integer in the CROSSRF= operand of the INTRO macro instruc-
tion.

At INTRO execution time, TCAM allocates 16n+8 contiguous bytes of main
storage, where n is the integer specified in the CROSSRF= operand, and eight
bytes is the length of the control block preceding the first entry for the table.
AVT+X200’ contains the address of the table. Each time a line is opened,
TCAM fills in the next available four-word entry in the table for that line.

The eight-byte control block preceding the first entry and the format of each entry
is shown in Figure 52.

If you queue by line, only one master queue control block is assigned to the line,
and TCAM places its address in the fourth word. If you queue by terminal, a
master queue control block is assigned to each station on the line; in this instance,
TCAM fills the fourth word with the address of the queue control block for the
station whose entry appears in the terminal table before that of any other station
on the line. If you open more lines than you provide entries for in the table,
entries are made until the space is exhausted; no entries are made for lines opened
after space runs out in the table.

If space permits, you should dynamically include the table at start-up time,
specifying, CROSSRF=n or F=n where n is the number of lines to be opened.

AVT

+ X'200*

FORMAT OF THE CROSS-REFERENCE TABLE CONTROL BLOCK

BYTE EXPLANATION
-H 0 ADDRESS OF FIRST AVAILABLE ENTRY
{ Il 1
+4 ADDRESS OF LAST ENTRY
1 1 i

EFORMAT OF CROSS-REFERENCE TABLE ENTRY

BYTE EXPLANATION
0 UNIT CONTROL BLOCK NAME
] 1 1
+4 UNIT CONTROL BLOCK ADDRESS
i 1 1
+8 LINE CONTROL BLOCK ADDRESS
1 1 .
2 ADDRESS OF A MASTER QUEUE CONTROL

BLOCK FOR THIS LINE
1 1 1

Figure 52. Cross-Reference Table Format

TCAM Diagnostic Aids 139

The information in the table is a ready reference for each UCB. You will find this
information especially helpful in the test/diagnose stages of implementing TCAM;
it is a fast way to find out which line is using which UCB and where the QCB for a
line is. It also shows which lines have been opened successfully. Figure 53 shows

the printout of a cross-reference table in a main-storage dump.

AVT
-
+512(200)
L
j S
060E60 80108006 S6F08011 0C16000F 00180008 00170010 00130019 \IFIRST Qnann12 *ee0e0ele
060E80 002700C5 €00100C3 00140007 00150020 00220018 00240008 YAVAILABLEI(LAST)4
06GEAQ 0C09001C 001D0OLE OC1FQO02Y 0023001A 00000025 00261055 [00060F20 [00C60FAO|
060ECO COFOF1F5 80001458 C2060C40 00026998 OOFOF1FI 800013F8 (CONTROL OBLOCKC
060EEQ0 | OOFOF1F7]80001488[02060A10]00026A20] 00FOF1F2 80001410 02060948 COUZ26A64
060F00 OCycp '8 UCB LcB MASTER 0OFOF1C1 800014D0 02057128 00026830
060F20 OCNAME'Q ADDRESS ADDRESS QCB ADDRESS C0060F40 00000000 00000000 00C00000 ¥eesssevecsesscccsce socsvse
J60F4C 0CULUr50 CUUULUULU UULUUUUYU VUUULULUY 0006CF60 00000000 00000000 COCOOCOC ¥eoee00000e000000c000etccsrcsasenc®
060F60 0C060F70 0C000000 00000000 00000000 00060F80 00000000 00000000 00COOCCO ¥eas0esese0cccssccsscscssssscccan®

Figure 53. A Cross-Reference Table

Console and Terminal Listings

Have the system console listing available before you start any debugging. It
contains a great deal of information about the system activities while TCAM is
running, including the IEAQ0OI error messages when permanent I/O errors occur.
These messages can help you determine if your problem lies in the hardware of the
line or the terminal.

In an ideal situation, you will also have all remote terminal listings when you start
to debug a problem. Sometimes this is not possible. However, you should always
have some remote terminal listings.

If you specified a terminal other than SYSCON, the system console, on the
PRIMARY = operand of the INTRO macro, have the terminal listing for that
terminal. All IEAQOOI error messages will be on this listing. You also need the
terminal listing from every secondary terminal (a terminal for which you specified
SECTERM=YES in its TERMINAL macro). These terminals can enter operator
commands that allow them to reconfigure the network as they desire. An unex-
pected operator command can impact the entire system, and you may not have
any idea why the system failed. Finally, you need terminal listings when there is
any data or line problem. '

When you collect the listings, mark the terminal name and type on the listings to
make it easier to locate the LCB for the terminal in error.

Remember, for all problems, you should have:

1. the system console listing,
2. the primary terminal listing (if it is not the console), and
3. all secondary terminal listings.

Using Operator Commands

140 OS TCAM User’s Guide

Using the TCAM operator control facility, you can enter operator commands to
examine or alter the status of your telecommunications network. You can enter
these commands from:

—

1. the system console;

2. a system input device (you must place the JCL identification // in the first two
positions); or

3. any station or application program you designate as a secondary terminal (by
coding SECTERM=YES on the TERMINAL or TPROCESS macro).

When you enter a command from a secondary station, remember:

1. you must precede the command with the characters specified in the
CONTROL= operand of the INTRO macro instruction; and
2. you must follow the command with one or more blanks.
Figure 54 is a quick-reference chart of the TCAM operator commands and their
functions.

Notes:

lineaddress may be entered either as the channel unit address or as
ddname,rin where ddname is the name of the line group as specjfied on the
DD statement and rin is the relative line number in the group.

statname is the specific station for which information or change is desired.
It must correspond to the name of a TERMINAL macro and may be from
one to eight characters beginning with an alphabetic character.

opfldname is the name of the specific option field, as specified in an
OPTION macro for which information or change is desired. It may be

from one to eight characters beginning with an alphabetic character.

procname is the name of the TCAM cataloged procedure in
SYS1.PROCLIB.

id is the TCAM identifier used in the START command or the name of
the job used to start TCAM in the system input stream.

Jjobname 1is identical to the jobname field in the JOB statement for the job.

Note 1: The sense field may be any one of the following:

BO bus-out check

CR command reject

DC data check

EC equipment check

M general intensive mode
IR intervention required
LD lost data

M2 leading graphics for 2740 Model 2 terminal
OR overrun

TO time-out

UE uqit exception

TCAM Diagnostic Aids 141

TYPE OF KEYWORD AREAS

OPERATION NAME COMMAND AFFECTED FUNCTION

DISPLAY | DPRIOPCL D TP, PRITERM system, | Displays the name of the current primary

station operator control station.

DSECOPCL | D TP, SECTERM system, | Displays the names of all secondary operator

station | control stations.

INTRCEPT D TP, INTER system, | Displays the names of all stations in the

station network that are intercepted (that is, stations
that can enter messages but to which
transmission of messages is suspended).

ACTVATED | D TP, ACT, lineaddress line, Displays the names of all active stations on

station | the line addressed.

INACTVTD D TP, INACT, lineaddress line, Displays the names of all inactive stations on

station | the line addressed.

LNSTATUS D TP, LINE, lineaddress line Displays the status field and error record for
the line (see Note 2),

QSTATUS D TP, QUEUE, statname line, Displays the queue control block for the

station | station; the information includes the number
of messages queued, the queve status, and the
priority levels permitted for messages.

STATDISP D TP, LIST, lineaddress line, Displays whether the invitation list for the

station | line may be polled and whether the Auto Poll
feature is being used to poll the list.

OPTFIELD D TP, OPTION, statname, opfldname, é station | Displays the contents of the field that is

D reserved in the option table for the station.
X is hexadecimal format; C, character
format; D, decimal format.

RLNSTATN | D TP, ADDR, statname station | Displays the name of the line group of which
the station is a part, the relative line number
of the line on which the station is located,
and the machine address of the line.

STSTATUS D TP, TERM, statname station Displays the status, input and output sequence
numbers, and current intensive-mode record-
ing status for the station.

HALT SYSCLOSE Z TP, QUICK system Stops message traffic on each line as soon as
transmission of any message currently being
sent or received on the line is completed.
Messages remaining in the system are sent to
the appropriate destinations after TCAM is
restarted. ’

Z TP, FLUSH system Stops message transmission from stations as
soon as transmission of any message currenrly
being sent is completed. All messages to
stations are then sent before the system is
halted. Intercepted messages that cannot be
sent to stations are sent to the appropriate
destination after TCAM is restarted.

HOLD SUSPXMIT H TP=statname station | Suspends transmission to the station named.
The station is intercepted, but can enter
messages.

MODIFY |CPRIOPCL F [[procname.] id { , OPERATOR=statname system, | Changes the secondary operator control station

jobname station | specified to the primary operator control
station.

ERRECORD system, | Records recoverable |/O errors occurring on

jobname

F([procname.] id} , INTENSE=LINE, lineaddress, sense [, sensecount]

station,

the line specified by lineaddress. Sensecount

(See Note 1) line is the number of times error recording is to
take place; default is 15.
F [[procname.] id | , INTENSE=TERM, statname, sense (, sensecount] [system, | Records recoverable I/O errors occurring on
jobname station | the station specified. Sensecount is the

(See Note 1)

number of times error recording is to take
place; default is 15.

Figure 54. Summary of Operator Commands (Part 1 of 2)

142 OS TCAM User’s Guide

TYPE OF KEYWORD AREAS
OPERATION NAME COMMAND AFFECTED FUNCTION
MODIFY | INTERVAL F [[procname.] id |, INTERVAL=SYSTEM system, | Causes the system to enter a delay for the
jobname line duration specified on the INTVAL= operand
of the INTRO macro.
SYSINTVL F [[procname.]id |, INTERVAL=SYSTEM, value system Changes the duration of the system interval
jobname to the value specified. Value is a decimal
number of seconds not exceeding 65535.
POLLDLAY | F [[procname.]id |, INTERVAL=POLL, statname, value line Changes the polling interval of the line group.
jobname Statname is the name of any station in the
line group to be changed. Replace value
with the decimal number of seconds less than
255.
AUTOSTRT F | [procname.]id | , AUTOPOLL=lineaddress, ON line Changes the line from programmed poll to the
jobname Auto Poll facility if the automatic polling bit
is on in the UCB for the line.
AUTOSTOP | F [procname.] id |, AUTOPOLL=lineaddress, OFF line Changes the line from automatic polling to
jobname programmed polling.
DATOPFLD | F [[procname.]id | , OPT=statname, opfldname, data station | Changes the contents of the option field for a
jobname : station. Opfldname is the option field to be
changed. Data is the data to be inserted.
GOTRACE F { [procname.] id | ,TRACE=lineaddress, ON line Starts the TCAM 1/O trace facility for the
jobname line.
NOTRACE F [[procname.]id |, TRACE=lineaddress, OFF line Deactivates the TCAM 1/O trace facility for
jobname the line.
DEBUG F [[procname.] id | ,DEBUG=L, routine system Starts the TCAM service aid routine that
jobname writes the dispatcher subtask trace table
(IEDQFE10 is the routine), the 1/0 interrupt
trace table (IEDQFE20), or the buffer trace
(IEDQFE30).

RELEASE |RESMXMIT | A TP=statname station | Releases the intercepted station so that
messages can be transmitted to the station
specified or for the line on which the station
is located.

VARY ACTVBOTH | V statname, ONTP, B station | Activates the nonswitched station named for

(See Note 3) both accepting and entering messages.
ENTERING V statname, ONTP, E station Activates the nonswitched station specified
(See Note 3) for entering messages only.
NOENTRNG| V statname, OFFTP, E station Prevents the nonswitched station specified
(See Note 3) from entering messages.
NOTRAFIC | V statname, OFFTP, B station Prevents the nonswitched station specified
(See Note 3) from both entering and receiving messages.
STARTLINE | Vlineaddress, ONTP line Begins or resumes transmission on the line
specified. Lineaddress may specify either for
a line or for the entire line group.
STOPLINE V lineaddress, OFFTP, C line Stops transmission of messages on the line or
line group specified after the current message.
V lineaddress, OFFTP, | line Immediately stops transmission of messages on

the line or line group specified.

Figure 54. Summary of Operator Commands (Part 2 of 2)

TCAM Diagnostic Aids 143

Note 2: Possible responses in the LNSTAT= field of the response message are:

BS binary synchronous line

CM line in control mode

CR continue or reset operation

DL switched (dial) line

IM receiving initiate mode message
LF line is free

MS MSGGEN/start-up message
NR negative response to polling
ocC operator control is stopping this line
RC recall is being performed

RV line is in receive mode

SD line is in send mode

TB EOT from a buffered terminal
TR I/0 trace active

NO BITS ON

Possible responses in the ERR= field of the response message are:

ABR abort—BSC line
CDC connect/disconnect error
CHR channel error
CUR control unit error
CuT CUTOFEF error
FMT format error
FWD FORWARD error
HDR incomplete header
HDW hardware error
INV invalid ID from station
ISB insufficient buffers
LER line error
LST. message lost (overlaid)
MAX main-storage maximum passed
MIN main-storage minimum passed
MNS " message not sent/received
NOP station inoperative
NTS TSO not in the system
OLT on-line test not in the system
ORG invalid origin
SEL selection error
SQH sequence number is high
SQL sequence number is low
TER terminal error
TXT text transfer error
UNR undefined error
- UNX unit exception
USE user error
NO BITS ON

Note 3: You must issue a -STOPLINE command to stop the line before you
enter this command, and, after receiving the response for the command, you
must issue a STARTLINE command.

144 OS TCAM User’s Guide

Normal End-of-Day Closedown
Dump the TCAM data sets at the end of the day, since they contain important
information about your system. The best way to handle your end-of-day cleanup
is to place a procedure in SYS1.PROCLIB that dumps all necessary information.

You then have to start only that one procedure, rather than try to remember all
the things you want to dump.

The following sample JCL creates an end-of-day procedure that dumps the
nonreusable disk message queue, the reusable disk message queue,
SYS1.LOGREC (the OBR/SDR data set), the log segment data set, and the
COMWRITE data set. If you have experienced trouble during the day’s execu-
tion, you should dump this output to the printer. However, if you are only dump-
ing those data sets to keep a history of the system, you should dump to an output

tape.

//PROC JOB MSGLEVEL=1

//STEP EXEC PGM=IEBUPDTE

//SYSPRINT DD SYSOUT=A

//SYSUT DD DSNAME=SYS1.PROCLIB,DISP=0LD

//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=0LD

//SYSIN DD DATA

./ ADD LIST=ALL,NAME=ENDOFDAY,LEVEL=01,SOURCE=0
./ NUMBER NEW1=1000, INCR=1000

//STEP1 EXEC PGM=IEDQXC,PARM='0Q=010,ALL"

//DISKQO1 DD DSN=SAMP1,DISP=SHR

//SYSPRINT DD SYSOUT=A

//STEP2 EXEC PGM=IEDQXC,PARM='0Q=010,ALL"

//DISKQO1 DD DSN=REUSABLE,DISP=SHR

//SYSPRINT DD SYSOUT=A

//STEP3 EXEC PGM=IFCEREPO,PARM=(MCOS,PS)

//SERLOG DD DSNAME=SYS1.LOGREC,DISP=OLD,UNIT=2311, *
// VOL=SER=DT1010

//EREPPT DD SYSOUT=A

//STEP4 EXEC PGM=IEDQXB

//SYSUT1 DD DSN=LOGSEG,VOL=SER=111111,UNIT=2311, *
// DISP=0OLD

//SYSPRINT DD SYSOUT=A

//STEP5 EXEC PGM=IEDQXB

//SYSUT1 DD DSN=COMWRITE,UNIT=2400,DISP=0LD, *

// LABEL=(,NL), VOL=SER=THANKS

//SYSPRINT DD SYSOUT=A

./ ENDUP

When you code this procedure:

1. You cannot include any step that requires a DD * or DD DATA statement (that
- is, you cannot include a utility that requires control statements); and
2. Each step has a space allocation. If you have trouble getting your output,
either place a SPACE= parameter on each SYSPRINT statement, or allocate
the SYSPRINT data set directly to the desired device.

After you close TCAM, issue the following commands for the system console:

Z EOD
S ENDOFDAY

The Z EOD command places an end-of-day marker in the SYS1.LOGREC data
set. The START command starts the dumping procedure.

TCAM Diagnostic Aids 145

sagejur ¥oo[g [0NU0D WYL "SS 2InSig

sdiysuorejay Yoorg [o1u0) WVIL 'V Xipuaddy

Main Storage Location 16
CVIPIR

Station Contiol Block

Task Control Block
Communication Vector Table
Line Control Block
8| 1Co0e8 4 OB Queve Data Extent Block e oo Starion Connol Block
20f 1o 4 mor . o) Leares Resovrce Control Block 0]xcsnmo f Dinsi
160(A0) § 1cB Addrens
LCBSCBD
208 Offer1o | 1CBsCBDA 4 3CB Dicctany
current CB
240(F0) AVT Address 0
(’ = L 80i501 I)CBYRANS ‘(ﬂlu‘nl Traonlationn Toble
1,0 Block
Tosk 1°0 Table Duto Exrent Block 2020 =
0 jobname x
iobrame 4 rewr 018 36(24)] Completion | LCBECBPT ’ ua
88 steprome -16(:10) [oeeoscaa 4 osce \ Code fOBRCEPT
Repeated
28010 ddnome for each 0] pEBTCBAD 18
ddname 48(30; LCBSTART f Channel Progiom
ICBSTART
‘Address Vector Table &’)| oesoesap Next DEB
40(28) I uce ~
(t g
328048) [AVICSTCS 4 Device Choracteristics Table 2418 | pEDCBAD 4 ocs
Repeated
for each
368(170) | avircs 4 mcpics device 32(20)| DEBUCBAD f ucs 4 Conent Invitorion
9660} LesiNvet List Eory
372074 | AVIRACE A 1/O Trace Table
376(171 AVIREADY i a e
(178) EAD Enobled Ready Queos s Control Block [
380(17C) | AVIREADD Disobled Ready Queve
I UCBNAME Unit Name 28010)| ocsiosan 4 08 cow
388(184) | AVICKGET Checkpoint Work Ar Code l Data l Flo l
(4 choctpin Work areo 32(20) [ncumns 4 Tiomslotion Tables t il
) 4
188) | A
3920188) | AVIOCGET & Operotor Control AVI Tromslation Tobles
Destination OCB
ot I .
420150 | Avisase A avr “oe)| ocetior Offset Incaming o]ocmcw § Erement Chain
44(2C)| DCBDEBAD 4 o
420040 | AVIDISTR A Subrosk Trace Table j Outgoing CB Choi
48(30) DCBSCTAD ’ Hag 88) QCBSTCHN ‘ hi{d] in
42401a8) | AVIRNMPT 4 Termname Toble
Speciol Choracters Toble
DCBINVLI ’ Invitation List 24018) QCBEXTO |—_'_‘
492(1EC) | AVTOSECE OS TCAM ECB
496(1F0) [AVIPCBPT A First PCB 220 | GCBDCBAD & DCBor PCB
Terminal Table Entry
500(1F4) [AVIOPTPT 4 Option Tablé
Invitation List 0 J TRMDESIQ § Destination OCB
40028) | Stoet of Priority OCB
ozforfos| Comrel RCPUE it | tavchansz |xerer| -
720200) | AVIADBUF & Buffer currently being processed Word L]
s ‘ TRMCONC
TRMSTAT For o process eatry, QCB Extemion
T e
900(384) | AVICOREC 4 Buffer Unit Pool Termnome Toble 120 Process Entry Work Area
Code and Conrol
Information I
y Terminal Name Address TRMCHCIN Option
1152(480) | AVTADEBR } Reusoble Disk DEB h b 160101} DCT Index TRMOPTBL Table [N\
Offser
Device Dependent Fields
1176(498) | AVIADERN e le Di: /
4 Nonreusable Disk DEB Soffe Pretin
13 16
0 Device Characteristics Table Option Table Option Choracteristics Table
PRFRCH PRFDEST rics Ui
2 i i 0| Length T No
Unit Control Sowrce Offser Destination Chorocteritics List el ik ol
rea i Chorocteristics List a4 Option Choracteristics Table Address 10(4)
4§

124!

sdiysuoney yoorg [onuel JAVIL °V xipuaddy

148

APPLICATION PROGRAM

N

MESSAGE CONTROL PROGRAM

PCB
s20f $ics
28| 41

ACCESS METHOD

ACSMETH WORK AREA

+4 ’ PEWA

+a8| 4 rrocess enTry

LMWA WORK AREA

LOCATE MODE

TERMNAME TABLE

f PROCESS ENTRY

LCB

SCB

+5C

|*SCB

PEWA WORK AREA

PROCESS ENTRY

+20

4 rcs

READ-AHEAD QUEUE

+C0

4 sce

PROCESS ENTRY

I foesr Qcs

+C

? PEWA

DESTINATION QCB

Figure 56. TCAM Control Block Linkages Between an Application Program and the MCP

Tc8 DEB
| [#rcs
+| 4 oes +4| |4 NexT DEB
+c| 4 nior g |drce
+C f PROCESS ENTRY
+10| |4 reap-aneap acs
+14| |4 acsmeTH
A
i +18 DCB
+ic| |4 twa
DCB
s2c| 4 e
OS TCAM User’s Guide

328(148)

368(170)
372(174)
376(178)

380(17C)

388(184)

392(188)

412(19C)

420(1A4)

424(1A8)

492(1EC)

496(1F0)

500(1F4)

512(200)

720(2D0)

900(384)

1152(480)

1176(498)

4(4)
8(8)

12(C)

12(C)

Address Vector Table

AVTCSTCS ? Device Characteristics Table
AVTTCB * Mcp TCB

AVIRACE 4 1/O Trace Table

AVTREADY Enabled Ready Queue
AVTREADD Disabled Ready Queve

AVTCKGET }

Checkpoint Work Area

AVTOCGET 1

—

Operator Control AVT

AVTBASE f

AVT

AVIDISTR 4 Subtask Trace Table
AVIRNMPT f * Termname Table
AVTOSECS OS5 TCAM ECB
AVTPCBPT f First PCB
AVTOPTPT 1 Option Table

+ Cross - Reference Table
AVTADBUF f Buffer currently being processed
AVTCOREC f Buffer=-Unit Pool

AVTADEBR f

Reusable Disk DEB

AviapesN 4

Nonreusable Disk DEB

Cross-Reference Table

Unit Name

T e

} LCB

f Master QCB

Unit Control Block

UCBNAME Unit Name

1/0 Trace Table

0 Control Block
16(10) Start of Entries
48 (30) * Repeated for Each Entry -_-;_
Subtask Trace Table
0 ? Next Entry
4(4) f First Entry
8(8) + Last Entry
12(C) Length of Table
16(10) First Entry
S L
32(20) T Repeated for each entry I
Line Control Block
0 LCBRCB Resource Control Block
LCBSCBD
24(18) Offset to LCBSCBDA TSCB Directory
currect SCB
1/0 Block
32(20) i Sense Bytes
36(24 Completion LCBECBPT Apcp
@4 Code |OBRCBPT
LCBSTART 4 Channel
48(30) IOBSTART | Program
LCBDCBPT
5264) tospcser | O
Current
96(60) LCBINVPT [Invitation
List Entry
Destination QCB
0 QCBELCHN Element
Chain
8(8) QCBSTCHN T STCB Chain
32(20) QCBDCBAD f DCB or PCB
40(28) Start of Priority QCB

Figure 57. Linkages of TCAM Diagnostic Aids

Appendix A. TCAM Control Block Relationships 149

Appendix B. TCAM Macro Operand Summary

The following figures (58-63) summarize the TCAM macros. They include the
macros defining terminal and line control (Figure 58, three parts), the macros
defining MCP data sets (Figure 59, three parts), the macros for activation and
deactivation (Figure 60, five parts), the MH macros (Figure 61, 10 parts), the
application program macros (Figure 62, seven parts), and other TCAM macros
(Figure 63).

The abbreviations used in these figures are:

Abbreviation Meaning

SYM Any symbol valid in the assembler language.

DEC DIG Any decimal digits, up to the value indicated in the
associated macro description.

REG A general register, always coded within parentheses.

RX-TYPE Any address that is valid in an RX-type instruction.

A-TYPE ADCON Any address that may be written in an A-type address
constant.

HEX DIG Any hexadecimal digits, up to the value indicated in the
-associated macro description.

CHARS Framed or unframed hexadecimal characters, up to the

maximum indicated in the associated macro description.

X indicates the appropriate column; for specific coding requirements, see the
TCAM Programmer’s Guide.

Note: Defaults are underlined.

Appendix B. TCAM Macro Operand Summary 151

152

0OS TCAM User’s Guide

DEFINE INVITATION LIST

symbol INVLIST ORDER = {statname+invchars,...) [, EOT = hexchar]
[, CPUID = address]
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
statname X
+ +or -
invchars X
EOT = X
CPUID = X

DEFINE A LOG ENTRY IN THE TERMINAL TABLE

logname LOGTYPE dcbname, BUFSIZE = integer, QUEUES = form
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
dcbname X
BUFSIZE = X
QUEUES = MO, MR, MN, DR, or DN

DEFINE AN OPTION FIELD

r symbol l OPTION J typelength

PARAMETER DEC

RX- A-TYPE HEX
WRITTEN AS SYM DIG REG

TYPE ADCON DIG CHARS

typelength | | I l l r X

Figure 58. TCAM Macros Defining Terminal and Line Control (Part 1 of 3)

DEFINE A

TERMINAL OR LINE ENTRY

symbol TERMINAL QBY =T, DCB = dcbname, RLN = integer, TERM = type,

QUEUES = form C, DIALNO = characters or DIALNO = NONE]
C, ADDR = characters J [, LEVEL = (integer,...)]
L, CLOCK = time J [, CINTVL = integer] [C, BUFSIZE = integer]
L, ALTDEST = symbol J [, BFDELAY = integer J [, TBLKSZ = integer]
[, NTBLKSZ = (integer, integer) J T, OPDATA = (data,...)]
[, SECTERM = YES or SECTERM = NO J[, COMP = YES or COMP = NO1]
[, UTERM = YES or UTERM = NO]

or

symbol TERMINAL QBY=L, DCB = dcbhname, RLN = integer, TERM =type,

QUEUES = form [, DIALNO = characters or DIALNO = NONE]
C, ADDR = characters J [, LEVEL = (integer,...)]
C, CLOCK = time 1] C,_ CINTVL = integer J [, BUFSIZE = integer]
C, ALTDEST = symbol JC, BFDELAY = integer 1 [, TBLKSZ = integer]
[, NTBLKSZ = (integer, integer)] [, OPDATA = (data,...)]
C, SECTERM = YES or SECTERM = NO 1L, COMP = YES or COMP = NOJ
L, UTERM = YES or UTERM = NOJ

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

QBY = Torl

DCBNAME = X

RLN = X

TERM = X

QUEUES = MO, MR, MN, DR, or DN

DIALNO = X X

ADDR = X

LEVEL = X

CLOCK = X

CINTVL = X

BUFSIZE = X

ALTDEST = X

BFDELAY = X

NTBLKSZ = X

TBLKSZ = X

OPDATA = X X X X X X X

SECTERM = YES or NO

COMP = YES or NO

UTERM = YES or NO

Figure 58. TCAM Macros Defining Terminal and Line Control (Part 2 of 3)

Appendix B. TCAM Macro Operand Summary 153

154

0OS TCAM User's Guide

DEFINE A LIST ENTRY IN THE TERMINAL TABLE

symbol

TLIST

TYPE = D, LIST = {entry,...)

or

r symbol i TLIST

l TYPE= C, LIST = (entry,...)

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

TYPE = Dor C

N R D D

DEFINE A PROCESS ENTRY
symbol TPROCESS PCB = pchname [, QUEUES = form J [, ALTDEST = entry]
. L, CKPTSYN = YES or CKPTSYN = NO J [, RECDEL = hexchar]

C, SECTERM = YES or SECTERM = NO J.[, LEVEL = (integer,...)]
L, OPDATA = (data, ...)]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

N I

QUEUES = MO, MR, MN, DR, or DN

ALTDEST = X

CKPTSYN = YES or NO

SECTERM = YES or NO

RECDEL = X

LEVEL = X

OPDATA = X X 0-15 X X X X

DEFINE TERMINAL TABLE BOUNDARIES

[symbol] [TTABLE LAST = statname [, MAXLEN = integer]
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
LAST = X
MAXLEN = X

Figure 58. TCAM Macros Defining Terminal and Line Control (Part 3 of 3)

DEF INE CHECKPOINT DATA CONTROL BLOCK

ckptdcb DCB DSORG = TQ, MACRF = (G, P), DDNAME = ddname, OPTCD = C
L, EXLST = address]

PARAMETER DEC RX~- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
DSORG = TQ

MACRF = (G,P)

ot | x | 1 | 1 1]
OPTCD = C

T 1T IxT1 T]

Figure 59. TCAM Macros Defining MCP Data Sets (Part 1 of 3)

Appendix B. TCAM Macro Operand Summary 155

156

0OS TCAM User’s Guide

DEFINE LINE GROUP DATA CONTROL BLOCK

linedeb DCB DSORG = TX, MACRF = (G, P), CPRI =R, DDNAME = ddname,
MH = mhname, INVLIST = (listname [, B, Bor B, Aor A, Bor A, AJl,,...)
[, INTVL=integer] [, EXLST = address] [, BUFIN = integer or
BUFIN = 1][, BUFOUT = integer or BUFOUT = 2] [, BUFMAX = integer
or BUFMAX = 23 [, BUFSIZE = integer] [, PCl = (N, N) or PCl = R, A)
or PCI = (A, N)or PCI= (A, R) or PCI= (A, A)J C, RESERVE = (integer,
integer) J [, SCT = tableJ [, TRANS = table or TRANS = EBCD]
or
linedcb DCB DSORG = TX, MACRF = (G, P) , CPRI = E, DDNAME = ddname,
MH = mhname, INVLIST = (listname [, B, Bor B, Aor A, Bor A, AJ,,...)
C, INTVL = integer J [, EXLST = address] [, BUFIN = integer or
BUFIN = 1] [, BUFOUT = integer or BUFOUT = 2] [, BUFMAX = integer
or BUFMAX =23 [, BUFSIZE = integer]J [, PCl= (N, N)or PCI = (N, R)
or PCl = (N, A) or PCI = (R, N)or PCl = (R, R) or PCI = (R, A) or
PCI= (A, N)or PCI = (A, R) or PCI= (A, A) J [, RESERVE = (integer,
integer) 1 [, SCT = table J [, TRANS = table or TRANS = EBCD]
or
linedch DCB DSORG = TX, MACRF = (G, P), CPRI = 5, DDNAME = ddname,
MH = mhname, INVLIST = (listname [, B, Bor B, Aor A, Bor A, AJ,...)
[, INTVL = integer] [, EXLST = address J [, BUFIN = integer or
BUFIN = 1] [, BUFOUT = integer or BUFOUT = 2] [, BUFMAX = integer
or BUFMAX = 2] [, BUFSIZE = integerJ L, PCI = (N, N) or PCI = (N, R)
or PCI = (N, A) or PCI = R, N) or PCi = (R, R) or PCI = (R, A) or
PCl= (A, N)or PCI= (A, R)or PCl= (A, A)J [, RESERVE = (integer,
integer) J [, SCT = table] [, TRANS = table or TRANS = EBCD]
PARAMETER - DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
DSORG = ™>
MACRF = @, P
INTVL= l X I | I I
CPRI = R, E,or S
DDNAME = X
MH = X
EXLST = X
BUFIN = X
BUFOUT = X
BUFMAX = X
BUFSIZE = X
RESERVE = X
SCT= X
TRANS = X X
PCl = (N, R, or A), (N, R, or A)
INVLIST = X l | I L I I X

Figure 59. TCAM Macros Defining MCP Data Sets (Part 2 of 3)

DEFINE A LOG DATA CONTROL BLOCK

logdcb DCB DSORG =PS, MACRF =W, DDNAME = ddname, BLKSIZE = keylen,
RECFM =F, NCP = integer, SYNAD = address
PARAMETER DEC RX= A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
DSORG = PS
MACRF = w
DDNAME = X
BLKSIZE = X
RECFM = F
NCP = X
SYNAD = X

DEF INE A MESSAGE QUEUES DATA CONTROL BLOCK

diskdcb DCB DSORG = TQ, MACRF = (G, P), DDNAME = ddname, OPTCD =L
L, EXLST = listname J [, THRESH = integer]
or
diskdeb DCB DSORG = TQ, MACRF = (G, P), DDNAME = ddname, OPTCD =R
L, EXLST = listname]
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
DSORG = TQ
MACRF = (G, P)
DDNAME = X | | I | |
OPTCD = Lor R
EXLST = X
THRESH = X

Figure 59. TCAM Macros Defining MCP Data Sets (Part 3 of 3)

Appendix B. TCAM Macro Operand Summary

157

158

OS TCAM User’s Guide

CLOSE MCP DATA SET

symbol CLOSE {dcbname,,...)L, MF = L or MF = (E, listname)]
PARAMETER DEC RX - A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

CLOSE Regular Form

dcbname | X I | I I I |
CLOSE List Form

dcbname X | I

MF = L

CLOSE Execute Form

dcbname

X

MF = (€,

X

m

INITIALIZE TCAM MCP

symbol

INTRO

[PROGID = characters] [, DISK = NO or DISK = YES]

[, CPB=integer] [, CIB=integer or CIB=2] [, PRIMARY = statname
or PRIMARY = SYSCONJ [, CONTROL = characters or CONTROL = 0]
[, KEYLEN = integer J [, UNITSZ = integer] [, LNUNITS = integer]
[, MSUNITS = integer J [, MSMAX = integer or MSMAX =70]

[, MSMIN = integer or MSMIN =50 J[, DLQ = statname or DLQ = 0]
[, USEREG = integer] [, INTVAL =integer] [, CPINTVL = integer

or CPINTVL=1800] [, CPRCDS = integer or CPRCDS = 2]
C,STARTUP=CLCYJ[CI1J]or STARTUP=WCYJCIJ]EL,

CKREQS = integer J [, RESTART = integer] [, PASSWRD = characters
or PASSWRD = 0] [, CROSSRF = integer] [, TRACE = integer]

[, TREXIT = address 1 [, DTRACE = integer J [, OLTEST = integer or
OLTEST =107 [, COMWRTE = YES or COMWRTE = NO]

L, WTTONE = integer] L, TOPMSG = NO or TOPMSG = YES]

[, LINETYP = BISC or LINETYP = STSP or LINETYP = MINI or

LINETYP = BOTH J [, FEATURE = (NODIAL or DIAL, NO2741 or 2741,
NOTIMER or TIMER)]

Figure 60. TCAM Macros for Activation and Deactivation (Part 1 of 3)

TN

INTRO - INITIALIZE TCAM MCP

Parameter Summary:

PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
PROGID = J X
DISK = YES or NO

CPB = X

CIB = X

PRIMARY = X X
CONTROL = 0 X
KEYLEN = X

UNITSZ = X

LNUNITS = X

MSUNITS = X

MSMAX = X

MSMIN = X

DLQ= X 0

USEREG = X

INTVAL = X

CPINTVL = X

CPRCDS = X

STARTUP = CLYIC1lerWCYIC!]

CKREQS = X

RESTART = X

PASSWRD = 0 X
CROSSRF = X

TRACE = X

TREXIT = X .

DTRACE = X

OLTEST = X

COMWRTE = YES or NO

WTTONE = i X J I l I l
TOPMSG = YES or NO

LINETYP = BISC, STSP, MINI, or BOTH

FEATURE = NODIAL or DIAL, NO2741 or 2741, NOTIMER or TIMER

Figure 60. TCAM Macros for Activation and Deactivation (Part 2 of 3)

Appendix B. TCAM Macro Operand Summary

159

160

0S TCAM User's Guide

OPEN MCP DATA SET

[symbol] OPEN (dcbname [, (OUTPUT or INOUT or INPUT [, IDLE])] ,...)
L, MF = L or MF = (E, listname)]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

OPEN Regular Form

dcbname

[L [

type

OUTPUT, INOUT, or INPUT

status

IDLE

OPEN List Form

dcbname X r I r] r l
type QUTPUT, INOUT, or INPUT

status IDLE

MF = L

OPEN Execute Form

T R I

dcbname

type OUTPUT, INOUT, or INPUT

status IDLE

wee [] Jeol][|
COMPLETE TCAM INITIALIZATION AND ACTIVATION

L symbol 3 READY L GMMSG = address J L, RSMSG = address]
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
GMMSG = X

RSMSG = X

Figure 60. TCAM Macros for Activation and Deactivation (Part 3 of 3)

—_—

CANCEL A MESSAGE

| [symbol] | CANCEWMG

[mask] [, CONNECT = AND or CONNECT = OR7]

PARAMETER DEC RX= A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
mask X - X
CONNECT= AND or OR
TAKE INCIDENT CHECKPOINTS OF OPTION FIELDS
l [symbol] | CHECKPT | j
TRANSLATE A MESSAGE
l [symbol] l CODE I [tablenome or (register) or NONE]
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
tablename X (0-12,15) X
KEEP A COUNT OF MESSAGES
r [symbol] l COUNTER —[opfld
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
opfld X
CUT OFF RECEPTION OF A MESSAGE
r [symbol] | CUTOFF integer 1
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
integer X X

Figure 61. TCAM Message Handler Macros (Part 1 of 10)

Appendix B. TCAM Macro Operand Summary

161

162

OS TCAM User’s Guide

INSERT DATE OR TIME IN A MESSAGE

SEND AN ERROR MESSAGE

[symbol] ‘l DATETIME [DATE = NO or DATE= YES] [, TIME = NO or TIME = YES] —l
PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

DATE = YES or NO

TIME = YES or NO

[symbol] ERRORMSG [mask] [, CONNECT = AND or CONNECT = OR] , DATA =
message [, DEST = destname or DEST = opfid or DEST= ORIGIN
or DEST=DESTIN] [, EXIT = address]

[symbol] ERRORMSG [mask] [, CONNECT = AND or CONNECT = OR] , DATA =
address [, DEST = destname or DEST = opfld or DEST = ORIGIN or
DEST = DESTIN] [, EXIT = address]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS | SYM DIG REG TYPE ADCON DIG CHARS
mask X X

DATA = X X
DEST = X X X
EXIT = X

CONNECT= AND or OR

Figure 61. TCAM Message Handler Macros (Part 2 of 10)

—

FORWARD A MESSAGE

[symbol] FORWARD [DEST= destname or DEST = opfld or DEST= (number) or DEST = PUT or
DEST=**] [, EOA = characters] [, EXIT = address]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

DEST = X x) X

EOA = X X

EXIT= X

SUSPEND MESSAGE TRANSMISSION

[symbol] HOLD [mask] [, RELEASE] [, INTVL=integer] [, CONNECT = AND
or CONNECT = OR]

PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
mask X ‘ X

RELEASE Written as shown

INTVL = X | X

CONNECT = AND or OR

DEFINE START OF INBUFFER SUBGROUP

[symbol] INBUF [PATH = (opfid, switch)]

PARAMETER DEC RX- A-TYPE = HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
opfld X

switch X X

DEFINE END OF INCOMING GROUP

[symbol] INEND

DEFINE START OF INHEADER SUBGROUP

[symbol] INHDR r [PATH = (opfld, switch)]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
opfld X

switch X X

Figure 61. TCAM Message Handler Macros (Part 3 of 10)

Appendix B. TCAM Macro Operand Summary

163

EXPEDITE MESSAGE DISTRIBUTION

[symbol] INITIATE —I [conchars [, BLANK = character or BLANK = NO or BLANK = YES]]
PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS | SYM DIG REG TYPE ADCON DIG CHARS

conchars X X

BLANK = : X X

DEFINE START OF INMESSAGE SUBGROUP

[symbol] INMSG [PATH = (opfld, switch)]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
opfld X

switch X X

LOCK STATION TO APPLICATION PROGRAM

[symbol] LOCK [EXTEND or MESSAGE] [, conchars [, BLANK = character or BLANK =
NO or BLANK = YES]]

_PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
type MESSAGE or EXTEND
conchars X X
BLANK =) X X

LOCATE OPTION FIELDS

[symbol T LOCOPT] opfld [, (register) or (15)]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
opfld X

register (2-12,15)

LOG MESSAGES OR SEGMENTS

I [symbol] —l LOG I dcbname or typename

PARAMETER DEC RX=- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
dcbname X

typename X

Figure 61. TCAM Message Handler Macros (Part 4 of 10)

164 OS TCAM User's Guide

EDIT A MESSAGE

[symbol] MSGEDIT ((orR[A] [T] , characters or (hexform,n) or DELIMIT or
CONTRACT] [, characters or offset or (integer, opfld) or SCAN]
[, characters or offset or SCAN or (count) or (0)]),...) [, BLANK =
character or BLANK = NO or BLANK = YES]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG = TYPE ADCON DIG CHARS

function lorR [A] (T]

data DELIMIT or CONTRACT

characters X X

(hexform X

/n) X

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

AT SCAN

characters X X

offset X

(integer X

,opfld) X

TO SCAN or (0)

characters X X

offset X

(count) X

FORMAT A MESSAGE

[symbol] MSGFORM [BLOCK = integer] [, SUBBLCK = integer][, SENDTRP = YES or
SENDTRP = NOJ

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

BLOCK = X X

SUBBLCK = X X

SENDTRP = YES or NO

Figure 61. TCAM Message Handler Macros (Part 5 of 10)

Appendix B. TCAM Macro Operand Summary

165

166

OS TCAM User’s Guide

GENERATE A MESSAGE

[symbol] MSGGEN [mask] , message [, CONNECT = AND or CONNECT=OR] [,

CODE = tablename or CODE = NO]
or

[symbol] MSGGEN [mask], fldname [, CONNECT = AND or CONNECT = OR] [,
CODE = tablename or CODE = NOJ

PARAMETER DEC RX=- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

mask X X

message X X

CONNECT = AND or OR

CODE = X X

fldname X

LIMIT MESSAGES

[symbol] | MSGLIMIT—I integer or opfld 1

PARAMETER DEC RX=- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

integer X X

opfld X

DEFINE MESSAGE TYPE

L[symbol] MSGTYPE [conchars [, BLANK = character or BLANK = NO or BLANK = YES]] J
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
conchars X X
BLANK = X X
IDENTIFY MESSAGE ORIGIN
{symbol] —I ORIGIN I [integer or X'FF']
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
length X X

" Figure 61. TCAM Message Handler Macros (Part 6 of 10)

DEFINE START OF OUTBUFFER SUBGROUP

[symbol] OUTBUF [PATH = (opfld, switch)]
PARAMETER DEC RX= A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
opfld X
switch X X
DEFINE END OF OUTGOING GROUP
| [symbol] | OUTEND | 1
DEFINE START OF OUTHEADER SUBGROUP
l [symbol] rOUTHDR T [PATH = (opfld, switch)] l
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
opfld X
switch X X
DEFINE START OF OUTMESSAGE SUBGROUP
L[symbol] roumse r [PATH = (opfld, switch)] I
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
opfld X
switch X X

SET A PATH SWITCH

[symbol] PATH switch, opfld [, conchars [, BLANK = character or
BLANK = NO or BLANK = YES]]

PARAMETER DEC RX~ A-TYPE HEX

WRITTEN AS. SYM DIG REG TYPE ADCON DIG CHARS

switch X X

opfld X

conchars X X

BLANK = X X

Figure 61. TCAM Message Handler Macros (Part 7 of 10)

Appendix B. TCAM Macro Operand Summary 167

DEFINE MESSAGE PRIORITY

[symbol] PRIORITY [integer] [, conchars [, BLANK = character or BLANK = NO or
BLANK = YES]]

PARAMETER DEC RX- A=-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
integer X

conchars X X

BLANK = X X
REDIRECT A MESSAGE

[symbol] REDIRECT [mask] [, CONNECT = AND or CONNECT = ORJ [, DEST =

destname or DEST = opfld or DEST = ORIGIN]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

mask X X

CONNECT = ANDor OR

DEST = x|] [R X

SET DISPLAY SCREEN

[symbol] SCREEN [WRE or WLA or WDC] [, conchars [, BLANK = character or

BLANK = NO or BLANK = YEs])

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

type WRE, WLA, or WDC

conchars X X

BLANK = ’ X X

INSERT OR VERIFY MESSAGE SEQUENCE

r[symbol] J SEQUENCEl

SET END OF FILE

[symbol] SETEOF [conchars [, BLANK = character or BLANK = NO or BLANK = YES]]
PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

conchars X X

BLANK = X F/U

Figure 61. TCAM Message Handler Macros (Part 8 of 10)

168 OS TCAM User's Guide

~——

SET SCAN POINTER

[symbol] SETSCAN skipchars [, BLANK = character or BLANK = NO or BLANK = YES]
[, POINT = FORWARD] [, MOVE = RETURN or MOVE = KEEP]
{ , RESULT = (register) or RESULT = (15)]

or

[symbol] SETSCAN integer [, BLANK = character or BLANK = NO or BLANK = YES]
[, POINT = BACK or POINT = FORWARD] [, MOVE = KEEP] or
MOVE = RETURN [, RESULT = (15) or RESULT = (register)]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

skipchars X X

integer X

BLANK = X X

POINT = BACK or FORWARD

MOVE = RETURN or KEEP

RESULT = (2-12,15) | |

Figure 61. TCAM Message Handler Macros (Part 9 of 10)

Appendix B. TCAM Macro Operand Summary

169

170

OS TCAM User’s Guide

DEFINE START OF MH

symbol STARTMH LC=IN [, STOP = YES or STOP = (opfld, switch)] [, CONV = YES or
CONV = (opfld, switch) or CONV = NO] [, LOGICAL = opfld or
LOGICAL = (opfld, switch, opfld)] [, BREG = integer or BREG = 1]
[, CONT = YES or CONT = (opfld, switch)]
or
symbol STARTMH LC=OUT [, STOP = YES or STOP = (opfld, switch)] [, CONV = YES or
CONV = (opfld, switch) or CONV = NO] [, LOGICAL = opfld or
LOGICAL = (opfld, switch, opfld)] [, BREG = integer or BREG = 1]
[, CONT = YES or CONT = (opfld, switch)]
PARAMETER DEC RX=- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
Lc= IN or OUT
STOP = YES or
(opfld X
,switch) X X
CONT = YES or
(opfld X
,switch) X X
CONV = YES or NO or
(opfld X
,switch) X X
LOGICAL = X
opfld
LOGICAL = X X
switch
BREG = X
SET USER ERROR BIT
| [symbol] I TERRSET I
UNLOCK A LOCKED STATION
| [symbol] l UNLOCK | [conchars [, BLANK = character or BLANK = NO or BLANK = YES]]
PARAMETER DEC RX~ A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
conchars X X
BLANK = X X

Figure 61. TCAM Message Handler Macros (Part 10 of 10)

WAIT FOR AND TEST COMPLETION OF A READ OR WRITE

[symbol] l CHECK l decbname

PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

decbname X L I | I I |

REQUEST A CHECKPOINT

[symbol] CKREQ

CLOSE APPLICATION PROGRAM DATA SET

L [symbol] CLOSE dcbname, ,...) [, MF= L or MF = (E, listname)]
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

CLOSE Regular Form

e [+ [T 1 T T 1

CLOSE List Form

e N R

MF = L
CLOSE Execute Form
dcbname X
MF = (€, X (1)

Figure 62. TCAM Application Program Macros (Part 1 of 7)

Appendix B. TCAM Macro Operand Summary 171

DEF INE INPUT DATA CONTROL BLOCK

dcbname DCB DSORG = PS, MACRF= GM L T], DDNAME = ddname,
BLKSIZE = integer [, BUFL = integer J [, LRECL = integer J
[, RECFM=For RECFM=V [BJ] or RECFM=U]

[, OPTCD=CWICUJCCJ1L, EODAD = address]

C, SYNAD = address J [, EXLST = address]

or

dcbname DCB DSORG = PS, MACRF= GL T3] , DDNAME = ddname,
BLKSIZE = integer [, BUFL = integer 1 [, LRECL = integer]
L, RECFM =F or RECFM = V [B] or RECFM = U]

C, OPTCD=CWILUJCC] IC, EODAD = address]

L, SYNAD = address J [, EXLST = address]

or

dcbname DCB DSORG = PS, MACRF =R [P], DDNAME = ddname,
BLKSIZE = integer L, BUFL = integer J [, LRECL = integer]
[, RECFM=For RECFM=V [B]or RECFM = U]

C, OPTCD=CWILUJLCC] 1L, EODAD = address]

L, SYNAD =address J [, EXLST = oddress]

PARAMETER DEC , RX- A-TYPE HEX
WRITTEN AS | sYm DIG REG TYPE ADCON DIG CHARS
DSORG = PS

MACRF = [GM, GMT, GL, GLT, R, RP]

DDNAME = X

BLKSIZE = X

BUFL = X

LRECL = X

RECFM = F, V, VB, or U

OPTCD = W, WU, WC, U, UC, C, or WUC

EODAD = X

SYNAD = X

EXLST = X

Figure 62. TCAM Application Program Macros (Part 2 of 7)

172 OS TCAM User’s Guide '

~—

DEF INE OUTPUT DATA CONTROL BLOCK

dcbname DCB DSORG = PS, MACRF = PM, DDNAME = ddname

[, BLKSIZE = integer J [, LRECL = integer]

[, OPTCO =LWILUILCIIL, SYNAD = address]
[, RECFM=For RECFM =V [B] or RECFM = U]
[, EXLST = address] [, BUFL = integer]

or

dcbname DCB DSORG = PS, MACRF = PL, DDNAME = ddname

[, BLKSIZE = integer J [, LRECL = integer]

[, OPTCD=[LWILUJCCIIL, SYNAD = address]
[, RECFM = F or RECFM = V [B] or RECEM = U]
[, EXLST = address 1 [, BUFL = integer]

or

dcbname DCB DSORG = PS, MACRF = W, DDNAME = ddname
[, BLKSIZE = integer J [, LRECL = integer]
[, OPTCD=CWICUJICC 1IC, SYNAD = address]
[, RECFM = F or RECFM =V [BJ or RECFM = U]
[, EXLST = address 1 [, BUFL = integer]

PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS | SYM DIG REG TYPE ADCON DIG CHARS
DSORG = PS

MACRF = PM, PL, or W

DDNAME = X

BLKSIZE = X

LRECL = X

OPTCD = W, WU, WC, WUC, U, UC, or C

oo | T [T T]
RECFM = F, V, VB, or U

EXLST = X

BUFL = X

GET A WORK UNIT

L symbol] I GET dcbname [, areaname]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
dcbname X
areaname X

Figure 62. TCAM Application Program Macros (Part 3 of 7)

Appendix B. TCAM Macro Operand Summary

173

174

0OS TCAM User’s Guide

CHANGE INVITATION LIST

| [symbo!] I ICHNG | grpname, rln, areaname [, PASSWRD = characters)
or
l [symbol] I ICHNG I grpname, rln, ACT [, PASSWRD = characters]
or
l [symbol] I ICHNG ' grpname, rln, DEACT [, PASSWRD = characters]
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
grpname X (0-14)
rin X (0-14)
type (0-14) X X
PASSWRD = X
COPY INVITATION LIST
l [symbol] I ICOPY | grpname, rln, areaname
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
grpname X (1-15)
rln X
areaname o, 1) X
CLOSE THE TCAM SYSTEM
l [symbol] MCPCLOSE [QUICK or FLUSH 1 [, PASSWRD = characters]
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
type QUICK or FLUSH
PASSWRD = I | * | | I | X
RELEASE A HELD STATION
[[symbol] I MRELEASE I statname [, PASSWRD = characters)
PARAMETER DEC RX~- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
statname X
PASSWRD = I I I [I | X

Figure 62. TCAM Application Program Macros (Part 4 of 7)

OPEN APPLICATION PROGRAM DATA SET

€ symbol] OPEN (dcbname, ,...) [, MF = Lor MF = (E, listname)]]
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
OPEN Regular Form

debame I X | | I | |

OPEN List Form ‘

dcbname X | I I | I

MF = L

OPEN Execute Form

dcbname X

MF = (€, X (1)

DEFINE PROCESS CONTROL BLOCK

symbol PCB MH = mhname, BUFSIZE = integer [, BUFIN = integer or BUFIN = 2]
4 [, BUFOUT = integer or BUFOUT = 2] [, RESERVE = (infeger, integer)]

PARAMETER DEC RX- A-TYPE HEX .
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
MH = X

BUFSIZE = X

BUFIN = X

BUFOUT = X

RESERVE = X

POINT TO A RECORD 70O BE RETRIEVED

[symbol] POINT dcbname, address

PARAMETER DEC RX~ A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
dcbname X l

address X

PUT A WORK UNIT
[[symbol J PUT dcbname [, areaname]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
dcbname X

areaname X

Figure 62. TCAM Application Program Macros (Part 5 of 7)

Appendix B. TCAM Macro Operand Summary 175

COPY QUEUE CONTROL BLOCK

r[symbol] I QCoPrY J statname, areaname

PARAMETER DEC RX=- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
statname X (0, 2-15)

areaname (1-15) X

READ A WORK UNIT

[symbol] l READ J decbname, SF, dcbname, areaname [, length or 'S*]

PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
decname X

SF written as shown

dcbname X

areaname X

length X 'St

CHANGE TERMINAL-TABLE ENTRY

[symbdl] | TCHNG ’ statname, areaname [, PASSWRD = characters]

PARAMETER DEC RX- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
statname X

areaname X
PASSWRD = X

COPY TERMINAL-TABLE ENTRY

r [symbo|] l TCOPY J statname, areanome

PARAMETER "D EC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS
statname X ()

areaname) X

Figure 62. TCAM Application Program Macros (Part 6 of 7)

176 OS TCAM User’s Guide

WRITE A WORK UNIT

[symbol] | WRITE | decbname, SF, dcbname, areaname [, length or 'S'] l
PARAMETER DEC RX- A-TYPE HEX
WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

P— I

SF written as shown

dcbname X

areaname X

length X s

Figure 62. TCAM Application Program Macros (Part 7 of 7)

START QTAM APPLICATION PROGRAM TO RUN WITH TCAM

[symbol]

QSTART

EDIT IBM 50 MDI

CONTROL CHARACTERS

[symbol] TPEDIT MINLN = N [, EDIT=EDITR or EDIT=EDITD] [, RECFM =Uor
RECFM =V] [, ERROPT = name or ERROPT = IGNORE] [, VERCHK =
VOKCHK or VERCHK = NOCHK] [, REPLACE = X'nn' or REPLACE =
x'19' 1 [, BUFFER = YES or BUFFER = NO]]

PARAMETER DEC RX~- A-TYPE HEX

WRITTEN AS SYM DIG REG TYPE ADCON DIG CHARS

MINLN= X

EDIT= EDITR or EDITD

RECFM= UorV

ERROPT= l | | [x T | x

VERCHK= VOKCHK or NOCHK

REPLA CE=] l 1 I I X |

BUFFER= YES or NO

Figure 63. Other TCAM Macros

Appendix B. TCAM Macro Operand Summary

177

Appendix C. TCAM Formatted ABEND Dump

A formatted TCAM dump is automatically produced as a part of the OS
ABEND/SNAP storage dump when TCAM is resident in the system.
ABEND/SNAP storage dumps occur immediately after an abnormal termination,
provided that the control program or problem program has issued an ABEND or
SNAP macro instruction, or when the operator issues a CANCEL command that
requests a dump, and the proper dump data sets have been defined.

The TCAM part of an MFT dump starts after the TRACE TABLE entries, and in
an MVT dump, the TCAM part starts after the SAVE AREA TRACE entries.
For a complete discussion of the OS portion of the dump, see the Guide to
Reading Dumps.

The following discussion of the TCAM part of either the OS MFT or MVT dump
is interspersed with sample sections from an ABEND dump. Capital letters
represent the headings found in all dumps, and lowercase letters represent inform-
ation that varies. The lowercase letter used indicates the mode of the information,
and the number of letters indicate the length of the information.

» hrepresents 1/2 byte of hexadecimal information
« drepresents one byte of decimal information
» crepresents a one-byte character

SAVE AREA 1

TCAM ADDRESS VECTOR TABLE hhhhhh

0000

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

0020 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
0040 hhhhhhhh hhhhhhhh

SAVE AREA 2

0048 hhhhhhhh hhhhhhhh
0060 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
0080 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

SAVE AREA 3

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh
0100 hhhhhhhh hhhhhhhh
DISABLED SAVE AREA

0120 hhhhhhhh hhhhhhhh
0140 hhhhhhhh hhhhhhhh

0090

O0A0 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
00CO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
SAVE AREA &

oopnsg

00EO0

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhbhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

TCAM ADDRESS VECTOR TABLE hhhhhh is the starting address of the
TCAM address vector table (AVT), which is generated by the INTRO macro
instruction. The formatted dump of the AVT beginning with the first save area,
labeled save area 1, follows the TCAM ADDRESS VECTOR TABLE hhhhhh
heading.

SAVE AREA 1 is the contents of the first save area defined in the AVT. The
registers are saved in and restored from this area according to standard linkage
conventions. Along the left-hand side of the dump are the relative offsets of this
save area from the beginning of the AVT.

Appendix C. TCAM Formatted ABEND Dump 179

SAVE AREA 2 is the contents of the second save area defined in the AVT. The
registers are saved in and restored from this area according to standard linkage
conventions. Along the left-hand side of the dump are the relative offsets of this
save area from the beginning of the AVT.

SAVE AREA 3 is the contents of the third save area defined in the AVT. The
registers are saved in and restored from this area according to standard linkage
conventions. Along the left-hand side of the dump are the relative offsets of this
save area from the beginning of the AVT.

SAVE AREA 4 is the contents of the fourth save area defined in the AVT. The
registers are saved in and restored from this area according to standard linkage
conventions. Along the left-hand side of the dump are the relative offsets of this
save area from the beginning of the AVT.

DISABLED SAVE AREA is the contents of the fifth save area defined in the
AVT. When a disabled TCAM routine gains control from the 1/0 supervisor, it
saves and restores consecutively the I/O supervisor’s registers 0 through 9 in this
save area.

TABLE POINTERS

0148
0160

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

180

OS TCAM User’s Guide

TABLE POINTERS are the addresses of the first device characteristics table;
three work areas used by the internal TCAM logic; the operator control message
identification string; the scrambled password character string; the TCAM MCP
TCB; and the TCAM 1/0 trace table. The following chart shows the different
fields, their offsets relative to the beginning of the AVT (which are also given on
the left-hand side of the dump), their length, and their contents.

7N

+0148
Address of the first DCT entry

14
rotac Disabled parameter list
+0150
L Disabled doubleword scratch area —
+0154
+0158
| — Enabled doubleword scratch area —
+015C
+0160
— The operator control message identification character string —
+0164
+0168
— The scrambled password character string —
+016C
+0170
Address of the TCB of the TCAM MCP
+0174

Address of the TCAM line 1/O trace table

DISPATCHER READY QUEUES

0178 hhhhhhhh hhhhhhhh
0180 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
01A0 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
01co hhhhhhhh hhhhhhhh hhhhhhhh

DISPATCHER READY QUEUES gives the contents of the TCAM dispatcher
ready queues (one enabled, one disabled) and various other fields in this section
of the AVT. The different fields, their offsets relative to the beginning of the
AVT (which are also given on the left-hand side of the dump), their length, and
their contents are illustrated below. ’

Appendix C. TCAM Formatted ABEND Dump 181

+0178
Enabled ready queue (points to first element to be dispatched)
+017C
First word of the disabled FIFO ready queue
+0180
Second word of the disabled FIFO ready queue
+0184
Checkpoint work area
+0188
Operator contro! work area
+018C
+0190 Executable instructions to save the user's registers, if requested
+0194
+0198
Parameter list
+019C +019D
Protection key Address of the AVT
+01A0 '
Address of additional optional parameters
+01A4
Address of the TCAM dispatcher subtask trace table
+01A8
Address of the termname table
+01AC
User exit address in the READY macro expansion
+01B0 t X
Address of the Line End Appendage BSC message scan subroutine (SCAN)
+018B4
Address of the Line I/O Interrupt Trace routine (IGG019Q0)
+01B8
— H l
+018C Tpost parameter list used by operator contro
+01C0
Address of start parameter list
+01c4 Number of +01C5 Number of +01C6 Number of Ii it
CiBs checkpoint requests umber of line units
+01C8
Address of Hold/Release Terminal routine (IEDQAS)

182 OS TCAM User’s Guide

TCB POINTERS

oicc hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB POINTERS give the addresses of the TCBs for checkpoint, operator control,
on-line test, and the FE Common Write (COMWRITE) task. These tasks are
attached tasks of the TCAM MCP. The following chart shows the fields contain-
ing the addresses and the offsets of the fields relative to the beginning of the
AVT. ‘
+01CC
Address of the Checkpoint TCB
+01D0
Address of the Operator Control TCB
+01D4
Address of the On-Line Test TCB
+01D8

Address of the FE Common Write TCB

ECBS

01DpC
01EQ
0200
0220
0240

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

ggﬁ:ggg: :ggﬁhghh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh nhhhhhAR

hhhhhhhh

ECBs contain the addresses of some of the internal routines and subtasks of the
TCAM MCP, the addresses of certain TCAM tables, the checkpoint ECB, the
on-line test ECB, the operator control ECB, the ECB used by the TCAM dis-
patcher to cause TCAM to enter a wait state when the ready queues are empty,
and the address of the FE Common Write (COMWRITE) ECB. The following
example gives a list of the different fields, their contents, and their relative offsets
from the beginning of the AVT (which are also given on the left-hand side of the
dump).

Appendix C. TCAM Formatted ABEND Dump 183

+01DC

Address of the FE Common Write ECB

+01E0
Checkpoint ECB
+01E4
On-Line Test ECB
+01E8
Operator Control ECB
+01EC . .
ECB used by the dispatcher to cause TCAM to be in wait state
+01F0
Address of the first process entry control block
+01F4
Address of the option table
+01F8
Address of the 1/0O Generator in the Activate subtask
+01FC
Address of the user trace exit
+0200
Address of the cross-reference table
+0204
Address of the communications parameter list
+0208
Address of the User Interface routine (IEDQUI)
+020C
Address of the Return Interface routine (IEDQLM)
+0210 Address of the routine to remove an element from
the Time Delay QCB (IEDQHGO02)
+0214
Address of the Address Finder routine (IEDQAL)
+0218
Address of the Buffer Association routine (IEDQGD)
+021C
Address of the Transparency CCW Builder routine (IEDQGT)
+0220
Address of the Buffer Step routine (IEDQAX)
+0224
Address of the TCAM Dispatcher {(IGGO19RB or IGGO19RO)
+0228
Address of the Leased Receive Scheduler (IGGO19R3)
184 OS TCAM User’s Guide

+022C

Address of the Send Scheduler (IGGO19R4)
+0230

Address of the Get Scheduler (IEDQEW)
+0234

Address of the Put Scheduler (IEDQEC)
+0238

Address of the Get FIFO Scheduler (IEDQEZ)
+023C

Address of the Log Scheduler {IEDQBZ)
+0240

Address of the Dial Receive Scheduler (IGGO19R1)
+0244

Address of the Buffered Terminal Scheduler (IGGO19RD)
+0248

Address of the Retrieve Scheduler (IEDQE7?)

024¢C
0260
0280
02A0
02co

SPECIAL ELEMENTS

hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh

SPECIAL ELEMENTS contain the interval checkpoint element, a special element

to request removal of the interval checkpoint element for the time delay queue,

the incident checkpoint element, and several address and constant areas used by

the internal TCAM logic. The following chart gives a list of the different fields,

their contents, their size, and their relative offsets from the beginning of the AVT.

Appendix C. TCAM Formatted ABEND Dump

185

+024C

Reserved
+0250
Reserved
+0254
Reserved
+0258
Reserved
+025C
Reserved
+0260
. Reserved
+0264
Reserved
+0268
Reserved
+026C
Reserved
+0270
Dummy Line ECB
+0274
Address of the translation list for IEDQA3
+0278
Address of the World Trade tone characters
+027C
Address of the Operator Awareness Message Router routine (IEDQNX)
+0280
Address of the 1/O Trace Table Handler routine (IGG019Q0)
+0284
Address of the System Delay QCB
+0288

Address of the Stop Line QCB

| +028C

Special element to cause removal of the checkpoint
element from the time delay queue

Open translate
byte

+029C
10240 Element to request interval checkpoint
+02A4 +02A5
Size of SCB Address of Checkpoint QCB

+02A8 : +02A9 +02A

Checkpoint request Number.of 2AA Checkpoint time interval

element flags checkpoint records
+02AC Ti fd £i t02AE offset to +02AF Open error

ime of day of interrupt Checkpoint QCB locator
*0280 (6] dule | i +0282 Type of Open error *0283 Checkpoint time
pen module ID having error YpP p delay status

+02B4 +02B5

Address of Time Delay subroutine (IEDQHGO1)

186. OS TCAM User’s Guide

—

System error
flag byte

Address of list of V-type address constants

+12B8 : +02B89
Offset to Bl.nary Link field on time queue
Search routine
+02BC
Dummy last element
+02C0
Address of dummy last element
+02C4
— Incident checkpoint element 1
+02C8
+02CC +02CE
Halfword constant X’0000’ Halfword constant X‘FFFF’
+02D0
Address of current buffer being processed (by message handler)
+02D4
Address of the 2260 Local Line End Appendage (IGGO19R5)
+02D8 +02D9

02pC
02E0
0300
0320
0340
0360
0380

QCB POINTERS

hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

QCB POINTERS contain the available buffer QCB, the buffer return QCB, the
checkpoint QCB, the operator control QCB, the on-line test QCB, the activate

QCB, the closedown QCB, the QCB to remove the checkpoint element from the

time-delay queue, the disk I/O QCB, the CPB cleanup QCB, the address of the

start-up message QCB, the address of the time-sharing input QCB, the address of

the application program OPEN/CLOSE routine, the address of the first byte of

main storage obtained by GETMALIN for the buffer-unit pool, a word containing

the number of buffer units being used by the main-storage message queues data

set, and a fullword constant of zeros. The following chart gives a list of the
different fields, their contents, their size, and their relative offsets from the
beginning of the AVT.

Appendix C. TCAM Formatted ABEND Dump

187

)
((

JER(ERTEEGUEYINTTETINYE Py

+02DC . .
Queue of available insert blocks
+02E0
Address-of the Start-up Message QCB
+02E4
Address of the Time Sharing Input QCB
+02ES8 Lo
Address of the application program OPEN/CLOSE routine (IEDQEU)
J_‘+02EC
— Time Delay QCB -
+02FC +02FE
Reference time Dummy INEND/OUTEND AVT
+0300 SVC 102 parameter list, used to cause SVC 102 to tpost the time
10304]
Delay QCB to itself when a timer interrupt occurs
+0308
Time delay queue
+030C
-~ Available Buffer QCB
T
_1+0318
T Buffer Return QCB
#0324
Checkpoint QCB
T
“‘L+0330 Operator Control QCB
1
J=#033C .
On-Line Test QCB
T
J:0348
Activate QCB
T
_L+0354
"r Closedown QCB
0360
._,r QCB to remove checkpoint element from time delay queue
_J+036C 0a
Disk 1/O QCB
T
_J+0378
e CPB Cleanup QCB
+0384 .
Address of area obtained by GETMAIN for buffer-unit pool
+0388
Number of buffer units being used by main-storage message queues
+038C
Fullword constant of zero

188 OS TCAM User’s Guide

INTERFACE

0390
03A0
03C0
03E0
0400

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

INTERFACE contains a GETMAIN parameter list used to obtain the buffer-unit
pool, the key length specified for the message queues, the number of lines opened,
the number of lines in the system delay, the offset into the termname table of the
primary operator control terminal, the number of buffer units in the buffer pool,
the number of lines serviced by the Start-up Message subtask, the number of

.seconds of the system delay, the offset into the termname table of the dead-letter

queue terminal, three flags and several constants used by the internal TCAM
logic, the number of restart checkpoint records, the number of buffers or CPBs on
the EXCP or retry queue, and the address of the FE Patch module used for
additional serviceability routines. Also, there are an FE work area, two parameter
list pointers, two ECBs, and four flag bytes all used by the FE Common Write
(COMWRITE) subtask. The following chart gives a list of the different fields,
their contents, their size, and their relative offsets from the beginning of the AVT.

Appendix C. TCAM Formatted ABEND Dump 189

+0390
Address of the FE Patch module (IEDQFE)

+0394
First parameter list pointer

+0398
First ECB

+039C +039D +039E +039F .
FE flag byte 1 FE flag byte 2 FE flag byte 3 FE flag byte 4

+03A0
Second parameter list pointer

+03A4
Second ECB

+03A8
FE work area

+03AC

B0 -~ - - - - - -"-"-""-"""-"7-"F""-""="-"”-"="-"~"="="="=-"~""”"/"=""7"°”
w34 - -~ - - -—"—-—"-"-"~—-—"="-"=""=">"=>"—"="="=>"="—"—7"”"”/”77
0w -~ -~ - - - - - —"—-——-—-— - - 7777 - T T
o - - - - - - - - - - - - -- -0 - 077 7777
030 . _ -~ -~ - - - - -"—-"—>- " -—"—"> "> ~—7-~7/~~- /- /-7
034 -~ T~~~ - - - - -"-"—"-" - - - -- - - --- -0 07777
s03c8 - /7~ T T T T T T T T T T T T n
03 -~ -~ -~ - - - - - - - " -—-—--—- - 07— -7 77
30 __~ -~ -~ - - - - - - -"-"-"—-"-" - - - - - - ==/ "77 - =]
34 __ ~ - -~ - - - - - -"-"—-—"—-—""—=-""—"7" "~/ -/ /-7 777
___________________________ -
+03D8
3¢ _ _ ~ ~— ~ ~ ~—~ -~ -—" -"-—"—-—"=-—""~-"=—"—"=""7"”"/""/"”"7/"V¥~—"/—"~—7/"7/ /" —/ /777

+03E0

+03E4

+03E8

190 OS TCAM User’s Guide

~T ~T
03€Cc -~ -~ - - - -~ -"=-—"-"""-"—"—"=-—"="—"="—"7~-/"“-"=""7="=7="7"7V"”7/V7/7 7
370 _ ~ —~ ~—~ ~—~ - - -"-"=-"-""-"F"-""""T""""""-""-"-=-"="-"——"">"="7="7 """ -
+03F4
— GETMAIN parameter list —
+03F8
+03FC +03FE
Halfword constant of 2
+0400 +0402
Halfword constant of 3 Halfword constant of 4
+0404 +0406
Halfword constant of 7 Halfword constant of 16
+0408 +040A
Key length on message queues Number of lines opened
+040C !\lumber of lines +040E Offset to primary operator
in system delay control terminal
10410 Number of buffer units +0412 Number of lines serviced by
in buffer-unit pool Start-up Message subtask
+0414 Number of seconds +0416 Offset to dead-letter
of system delay terminal
+0418 . . +041A +041B
BR instruction Flag byte 1 Flag byte 2
+H041C
Flag byte 3 +041D Number of restart +041E Number of buffer or CPBs
checkpoint records on EXCP or retry queue
Note: This is the end of the AVT when ENVIRON=TSO has been specified
on the INTRO macro instruction.
CORE QUEUE
0420 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

CORE QUEUE contains the address of the Destination Assignment routine, the
values specified by the MSMIN=, MSMAX=, and MSUNITS= operands of the
INTRO macro instruction, and a queue of buffers and ERBs waiting to be proc-
essed. The following chart gives a list of the different fields, their contents, their
size, and their relative offsets from the beginning of the AVT.

Appendix C. TCAM Formatted ABEND Dump

191

+0420
Address of the Destination Assignment routine (IEDQHMO02)
+0424
MSMiN=integer
+0428
MSMA X=integer
+042C]
Number of units usable in main-storage queues (MSUNITS=integer)
+0430
Queue of buffers and ERBs waiting
f— to be processed —
+0434
DISK
o438 hhhhhhhh hhhhhhhh
ouu0 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh " hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
0460 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
0480 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
GUAO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ouco hhhhhhhh hhhhhhhh hhhh

192

OS TCAM User's Guide

DISK contains the queues and control information for the disk message queues
(reusable and nonreusable) for the TCAM MCP. The following chart gives a list
of the different fields, their contents, their size, and their relative offsets from the
beginning of the AVT.

+0438

Address of the Disk EXCP Driver routine (IGGO19RC)

+043C
Address of the Reusability subtask (IGGO19RP - REUS)
+0440
Address of the Copy subtask QCB (IGGO19RP - COPY)
+0444
_ Disabled queue of CPBs to be processed by CPB Cleanup —
+0448
+044C
L Enabled queue of CPBs to be processed by CPB Cleanup
+0450]
+454
__ Queue of CPBs waiting for buffers]
+0458
+045C
L Reserved —
+0460
+0464
r+—0468 Queue of CPBs requesting 1/O to be done by the Disk EXCP Driver —
+046C
Queue of inactive CPBs, called the CPB free pool
+0470
Address of the CPB free pool
+H0474
Address of list of 10Bs for reusable disk queues
+0478
Address of list of I0Bs for nonreusable queues
+047C
Reusable disk queue when Reusability subtask activated
+0480
Address of DEB (reusable disk)
+0484
Number of extents (reusable disk)
+0488
Number of records per track (reusable disk)
+048C
Number of tracks per cylinder (reusable disk)
Appendix C. TCAM Formatted ABEND Dump 193

Note: This is the end of the AVT.

+0490
Number of records in entire data set (reusable disk)
+0494 Product of number of extents timesmumber of records
per track (reusable disk)
+0498
Address pf DEB (nonreusable disk)
+049C
Number of extents (nonreusable disk)
+04A0
Number of tracks per cylinder (nonreusable disk)
+04A4 .
Number of records per track (nonreusable disk}
+04A8
Number of records in entire data set (nonreusable disk)
H04AC Product of number of extents times number of records
per track (nonreusable disk)
+04B0 Absolute record number that is the threshold to cause
closedown due to filling of the nonreusable disk queue
+04B4
Nonreusable disk queue
+04B8
Reusable disk queue
L+04BC B
~ Nonreusable Threshold Closedown Element Vr
+04C8
CPB = integer

TNT hhhhhh CODE hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhh
SRCHX hhhh ENLEN hh MIDEN hhhhhh LEN hhhh
DCODE hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

194

TNT hhhhhh is the address of the TCAM termname table, which contains the
names and addresses of all of the terminal-table entries. (Each of the terminal-
table entries is displayed following this section of the dump.)

CODE is the executable termname table code that converts the invitation list
relative position field into the absolute address of the terminal-table entry. This

code is used only by enabled routines.

SRCHX hhhh is the search extent factor.

ENLEN hh is the number of bytes in each entry.

MIDEN hhhhhh is the absolute address of the middle entry.

LEN hhhh is the total number of entries.

0OS TCAM User’s Guide

N

DCODE is the executable termname table code that converts the invitation list
relative position field into the absolute address of the terminal-table entry. This
code is used only by disabled routines.

Following the TNT section of the dump are each of the terminal-table entries
along with their option-table entries (if any exist) and contents. Some additional
fields in each of the terminal-table entries may or may not be present according to
the optional parameters specified on the TERMINAL macro instruction. These
are discussed where applicable. Four different types of entries are in the terminal
table. They are single entries, list entries (cascade and distribution), process
entries, and line entries. The following four sections give an example of each type
of entry. Each of the four types of entries has a STATE field, which is the status
byte of the terminal-table entry. The following example is a list of the bit mean-
ings of this one-byte status field.

Bit(s) Meaning

0-2 000 = single entry
001 = process entry
010 = list entry (cascade or distribution)
100 = line entry

3 always O for a GET-type list or a GET-type process entry
always 1 for a single entry, line entry,
or a PUT-type process entry

4 0 = a PUT-type process entry (if process entry)
1 = a GET-type process entry (if process entry)
(always 1 for other type entries)

5 0 = terminal is not in hold mode
1 = terminal is in hold mode (If this is a process entry,
it indicates CKPTSYN=YES was specified on the
TPROCESS macro.)

6 0 = no option fields used
1 = option fields used

7 0 = not secondary operator control terminal
1 = secondary operator control terminal

An example of a single entry follows.

NAME cccccecce

TRM hhhhhh

STATE/DESTQ hhhhhhhh

IN/OUTSEQ hhhhhhhh ALTD/DEVFL hhhhhhhh STAT hhhhhhhh CHCIN/OPNO/OPTBL hhhhhhhh

NAME ADDR OPTION FIELD
ccccecce hhhhhh hhhhhhhh
cccceccce hhhhhh hhhhhhhh

BUFFSIZE
DIAL DIGITS
ADDR CHAR
BLOCK
SUBBLOCK
TRANS BLOCK
BFDELAY
TIME SHARING

hhhhhhh
hhhhhh

NAME cccecccc is the name in the termname table of this terminal-table entry.

TRM hhhhhh is the address of the terminal-table entry.

Appendix C. TCAM Formatted ABEND Dump 195

196

OS TCAM User’s Guide

STATE/DESTQ hhhhhhhh

The first byte is the status byte of the terminal-table entry. The last three bytes
contain the address of the destination QCB for this entry.

IN/OUTSEQ hhhhhhhh

The first two bytes contain the next expected input sequence number. The
second two bytes contain the next output sequence number to be used.

ALTD/DEVFL hhhhhhhh

The first two bytes contain the offset into the terminal table of the alternate
destination for this entry. The last two bytes are flag bytes used by the internal
TCAM logic. The bits and their meanings are:

Bit(s) Meaning

BUFSIZE = specified

dial digits present

addressing characters present
BLOCK-= specified
SUBBLCK = specified
TRANS= specified
BFDELAY = specified

TSO field present

8-15 Reserved

STAT hhhhhhhh is a word for error statistics.

NN s WD =0

CHCIN/OPNO/OPTBL hhhhhhhh

The first byte is the index to the device characteristics table for this entry. The
second byte gives the number of option fields for this entry. The next two
bytes contain the offset into the option table for the option fields for this entry.

NAME ADDR OPTION FIELD ccccccce hhhhhh hhhhhhhh gives a list of the
names, addresses, and contents of each of the option fields for this entry.

BUFFSIZE hhhh is the output-buffer size for this entry. This value is given in
the dump only when a nonzero value has been specified on the BUFSIZE=
operand of the TERMINAL macro.

DIAL DIGITS hhhhhhh is the telephone number of this terminal. This field is
given in the dump only when the CALL= operand of the TERMINAL macro
has been specified, except where CALL=NONE was specified.

ADDR CHAR hhhhhh is the addressing characters for the terminal as specified
on the ADDR= operand of the TERMINAL macro.

BLOCK hhhh is the number of bytes to be transmitted in each block of data in
nontransparent mode for messages sent to this terminal. The value corresponds
to the value specified in the BLOCK= operand of the TERMINAL macro and
is not given in the dump if the value was not specified.

SUBBLOCK hh is the number of bytes to be transmitted in each subblock of
data in nontransparent mode for messages sent to this terminal. The value
corresponds to the value specified in the SUBBLCK = operand of the TERMI-
NAL macro and is not given in the dump if the value was not specified.

TRANS BLOCK hhhh is the number of bytes to be transmitted in each block
of data in transparent mode for messages sent to this terminal. The value

N

corresponds to the value specified in the TBLKSZ= operand of the TERMI-
NAL macro and is not given in the dump if the value was not specified.

BFDELA‘Y hhhh is the number of seconds of delay to be used between mes-
sage blocks being sent to a buffered terminal. This field is given in the dump
only if the BFDELAY = operand of the TERMINAL macro has been specified.

TIME SHARING hhhh is a field used by TSO. In the case that this eritry is an
IBM 2260 or an IBM 2265, the first byte is the number of lines that can be
displayed and the second byte is the number of characters per line. If the
terminal is not an IBM 2260 or an IBM 2265, both bytes are zero. This field is
given in the dump only when TSO is being used.

An example of a list entry follows.

NAME ccccccece

TRM hhhhhh STATE/DESTQ hhhhhhhh TLISTCNT hhhh

LIST ENTRIES
cceccece
cceceecce

NAME cccccccc is the name in the termname table of this terminal-table entry.

TRM hhhhhh is the address of the terminal-table entry.

STATE/DESTQ hhhhhhhh

The first byte is the status byte of the terminal-table entry. The last three bytes
contain the address of the destination QCB.

TLISTCNT hhhh is the number of entries in this distribution or cascade list.

LIST ENTRIES is a list of the names that appear in the cascade or distribution
list.

An example of a line entry follows.

NAME cccccece

TRM hhhhhh STATE/DESTQ hhhhhhhh IN/OUTSEQ hhhhhhhh ALTD/DEVFL hhhhhhhh STAT hhhhhhhh CHCIN/OPNO/OPTBL hhhhhhhh
NAME ADDR OPTION FIELD ’

cccccece hhhhhh hhhhhhhh
cccccecce hhhhhh hhhhhhhh

ADDR CHAR hhhhhh

NAME cccccece is the name in the termname table of this terminal-table entry.

TRM hhhhhh is the address of the terminal-table entry.

STATE/DESTQ hhhhhhhh

The first byte is the status byte of the terminal-table entry. The last three bytes
contain the address of the destination QCB for this entry.

IN/OUTSEQ hhhhhhhh

The first two bytes contain the next expected input sequence number. The
second two bytes contain the next output sequence number to be used.

Appendix C. TCAM Formatted ABEND Dump 197

ALTD/DEVFL hhhhhhhh
The first two bytes contain the offset into the terminal table of the alternate
destination for this entry. The last two bytes are flag bytes used by the internal
TCAM logic. The following table is a list of the bits and their meanings.

Bit(s) Meaning

0 BUFSIZE= specified

1 dial digits present

2 addressing characters present
3 BLOCK= specified

4 SUBBLCK = specified

5 TRANS= specified

6 BFDELAY = specified

7 TSO field present

8-15 Reserved

STAT hhhhhhhh is a word for error statistics.

CHCIN/OPNO/OPTBL hhhhhhhh
The first byte is the index to the device characteristics table for this entry. The
second byte gives the number of option fields for this entry. The next two
bytes contain the offset into the option table for the option fields for this entry.

NAME ADDR OPTION FIELDS ccccccee hhhhhh hhhhhhhh gives a list of the
names, addresses, and contents of each of the option fields for this entry.

ADDR CHAR hhhh is the addressing characters for the terminal as specified
on the ADDR= operand of the TERMINAL macro.

An example of a process entry follows.

NAME ccccccec)
TRM hhhhhh STATE/DESTQ hhhhhhhh IN/OUTSEQ hhhhhhhh ALTD/DEVFL hhhhhhhh STAT hhhhhhhh CHCIN/OPNO/OPTBL hhhhhhhh

NAME ADDR OPTION FIELD
cccceccce hhhhhh hhhhhhhh
ccccecccec hhhhhh hhhhhhhh

NAME cccceeccc is the name in the termname table of this terminal-table entry.
TRM hhhhhh is the address of the terminal-table entry.

STATE/DESTQ hhhhhhhh
The first byte is the status byte of the terminal-table entry. The last three bytes
contain the address of the destination QCB for this entry.

IN/OUTSEQ hhhhhhhh
The first two bytes contain the next expected input sequence number. The
second two bytes contain the next output sequence number to be used.

ALTD/DEVFL hhhhhhhh
The first two bytes contain the offset into the terminal-table of the alternate
destination for this entry. The last two bytes are flag bytes used by the internal
TCAM logic. The following table is a list of the bits and their meanings.

198 OS TCAM User’s Guide

™~

Bit(s) Meaning

BUFSIZE= specified

dial digits present

addressing characters present
BLOCK = specified
SUBBLCK = specified
TRANS= specified
BFDELAY = specified

TSO field present

8-15 Reserved

STAT hhhhhhhh is the address of the process-entry work area (IEDQPEWA) if
the corresponding application program DCB is opened.

~N O kW= O

CHCIN/OPNO/OPTBL hhhhhhhh
The first byte is the index to the device characteristics table for this entry. The
second byte gives the number of option fields for this entry. The next two
bytes contain the offset into the option table for the option fields for this entry.

NAME ADDR OPTION FIELDS ccccecce hhhhhh hhhhhhhh gives a list of the
names, addresses, and contents of each of the option fields for this entry.

TCAM DESTINATION QCB'S

QCB hhhhhh DSFLG/ELCHN hhhhhhhh PRI/LINK hhhhhhhh STVTO/STCHN hhhhhhhh STPRI/SLINK hhhhhhhh
EOLTD/STAT hhhhhhhh SCBOF/INSRC hhhhhhhh INTVL/MSGCT hhhhhhhh PRLVL/LKRRN hhhhhhhh
RELLN/DCBAD hhhhhhhh FLAG/QBACK hhhhhhhh

PRIORITY QCB hhhhhh
DNHDR hhhhhh FHDLZ hhhhhh FHDTZ hhhhhh INTFF hhhhhh INTLF hhhhhh
FFEFO hhhhhh LFEFO hhhhhh CFHDR hhhhhh PRIPQ hh CPVHD hhhhhh

TCAM DESTINATION QCB’S gives the destination QCB:s for all of the
terminal-table entries. These QCBs are used to control the message queuing
for the terminals in the TCAM system. Each QCB may service one or more
terminals depending upon the type of queuing specified in the TERMINAL

~ macro. Each of these QCBs consists of a master QCB and one or more
priority-level QCBs. Priority QCBs are generated by the LEVEL= operand of
the TERMINAL macro. If this operand is omitted, only one priority level QCB
is generated and its priority is X‘00’. Whether or not the LEVEL= operand is
specified, the X‘00’ priority-level QCB is generated.

QCB hhhhhh is the starting address of the master QCB.

DSFLG/ELCHN hhhhhhhh
The first byte is a flag byte indicating the type of queuing being used by this
QCB. The next three bytes contain the address of the next element in the
chain.

PRI/LINK hhhhhhhh
The first byte is the priority of this QCB. The last three bytes contain the
address if the next STCB in the chain.

STVTO/STCHN hhhhhhhh

The first byte is the index to the entry in the subtask vector table. The last
three bytes contain the STCB chain.

Appendix C. TCAM Formatted ABEND Dump 199

200

OS TCAM User’s Guide

STPRI/SLINK hhhhhhhh

The first is the priority of the STCB. The last three bytes contain the address
of the next STCB in the chain.

EOLTD/STAT hhhhhhhh
The first two bytes contain the interrupt time used by the time-delay routine.
The third byte is the LOCK relative line number, and the fourth byte is the
QCB status byte.

SCBOF/INSRC hhhhhhhh
The first byte is the offset to the proper SCB for the current transmission. The
next three bytes contain the address of the first LCB in the source LCB chain.

INTVL/MSGCT hhhhhhhh
The first two bytes contain the value as specified on the CLOCK= or INTVL=
operand of the TERMINAL macro. The second two bytes contain the count of
the messages on this queue.

PRLVL/LKRRN hhhhhhhh
The first byte is the priority of the highest-priority message in the queue. The
last three bytes contain the LOCK relative record number.

RELLN/DCBAD hhhhhhhh
The first byte is the relative line number for the line that this QCB represents.
The last three bytes contain the address of the DCB.

FLAG/QBACK hhhhhhhh

The first byte is an additional status byte for the QCB. The last three bytes
contain the QBACK message chain.

PRIORITY QCB hhhhhh is the address of this priority-level QCB.

DNHDR hhhhhh is the disk record number assigned to the next header that is
received.

FHDLZ hhhhhh is the disk record number of the first header placed in the last
zone used by this queue.

FHDTZ hhhhhh is the disk record number of the first header placed in the current
zone.

INTFF hhhhhh is the disk record number of the first held message in this queue
(placed in FEFO order).

INTLF hhhhhh is the disk record number of the last held message in this queue
(placed in FEFO order).

FFEFO hhhhhh is the disk record number of the first message that has not
been sent (placed in FEFO order).

LFEFO hhhhhh is the disk record number of the last message that has not been
sent (placed in FEFO order).

CFHDR hhhhhh is the main-storage queue address of the first header appear-
ing in this queue.

PRIPQ hh is the priority level of this priority-level QCB.

CPVHD hhhhhh is the main-storage queue address of the last header appearing in

this queue.
TCAM DCB'S
DCB hhhhhh (LINE GROUP)
DEVICE INTERFACE hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
D/S INTERFACE hhhhhhhh hhhhhhbhh hhhhhhhh hhhhhhhh hhhhhhbh
FOUNDATION hhhhhhhh hhhhhhhh hh
EXTENSION hhhhhh hhhhhhhh hhhhhhhh
INVITATION LISTS hhhhhhhh
LCB hhhhhh KEY/QCBA hhhhhhhh PRI/LINK hhhhhhhh RSKEY/STCBA hhhhhhhh. RSPRI/RSLNK hhhhhhhh
EOLTD/TSOB hhhhhhhh CHAIN/INSRC hhhhhhhh SCBO/SCBDA hhhhhhhh ISZE/FSBFR hhhhhhhh
FLAGS/SENSE hhhhhhhh ECBCC/ECBPT hhhhhhhh FLAG3/CSW hhhhhhhh hhhhhhhh
SIOCC/START hhhhhhhh DCBPT hhhhhhhh RCQCB hhhhhhhh INCAM/ERRCT hhhhhhhh
UCBX/RCBFR hhhhhhhh RECOF/STATE hhhhhhhh TSTSW/RECAD hhhhhhhh ERBKY/ERBQB hhhhhhhh
ERBPY/ERBLK hhhhhhhh ERBST/ERBCH hhhhhhhh ERBCT/TTCIN hhhhhhhh MSGFM/SCBA hhhhhhhh
ERMSK/INVPT hhhhhhhh TPCD hhhhhhhh hhhhhhhh hhhhhhhh
SNSV/CSWSV hhhhhhhh hhhhhhhh ERCCW hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCAM DCBs give the three different types of TCAM DCBs: the line group
DCBs (along with their related LCBs), the message queues DCBs, and the
checkpoint DCB. (The message queues DCBs are not given in the dump if the
TCAM system does not use disk queuing, and the checkpoint DCB is not given
in the dump if the checkpoint/restart facility is not being utilized.)
DCB hhhhhh (LINE GROUP) is the starting address of this line group DCB.
DEVICE INTERFACE
This section is reserved.
D/S INTERFACE contains the number of buffers assigned initially for input
operations, the number of buffers assigned initially for output operations, the
address of the message handler for this line group, the polling delay interval, the
program-controlled interruption options, the data set organization, the maximum
number of buffers to be used at any given time for data transfer for each line in
the line group, the base for addressing IOBs for the line group (initialized at open
time), the relative priority of send and receive operations, the address of the
translation table, the extended IOB index (size of an LCB), and the address of the
exit list. The following table shows these fields, their relative offsets from the
beginning of the DCB, their contents, and their size.
+14 Initial) Initial +15
Receive 1 Send Address of the Message Handler
Allocation : Allocation
+18 . +19
Polling Delay Interval PCI Options +HA Data Set Organization
+1C . +1D
Maximum Send or .
Receive Allocation Open-Base for Addressing 10Bs
+20 iori +21
Priority of Send/ 2 Address of the Translation Table
Receive Operations
+24 +25
10B index Address of the Exit List

For more detailed information on these fields, see System Control Blocks,
GC28-6628.

Appendix C. TCAM Formatted ABEND Dump 201

FOUNDATION contains fields that are changed during open time. Before open,
these fields contain the DDNAME character string, the open flags, the I0S error
flags, and the macro instruction reference. After open, they contain the offset of
the DD entry from the beginning of the TIOT, the macro instruction reference,
the IOS error flags, the address of the DEB, and the open flags. The following
two charts show this area and its contents before and after open.

Before Open:

+28
DDNAME character string
—+§C j
+30 Open +31 10S error +32 . .
flags flags Macro instruction reference

Note: During open, the I0S error flags field and the macro instruction
reference field are relocated and the last three bytes of the last word become
part of the EXTENSION section.
After Open:

+28 +

8:;?:;&;3?&?%8}““ 2A Macro instruction reference
+2C +2D
;ggf"m Address of the DEB
+30 Open
flags
For more detailed information on these fields, see System Control Blocks.
EXTENSION contains the address of the special characters table, the number of
invitation lists, the number of units for each buffer, the size of all buffers used by
this line group, and the number of reserve characters. The following example
shows these fields, their relative offsets from the beginning of the DCB, their
contents, and their size.
+31 : .
Address of the special characters table
34 . Number of +35 Number of units +36 Buffer si
invitation lists per Buffer utter size

38 Four one-byte reserve values
For more detailed information on these fields, see System Control Blocks.
INVITATION LISTS gives the addresses of the different invitation lists for the
different lines in the line group. Each list is pointed to by a one-word address.
These addresses are given in order by relative line number.
Following each line group DCB is one or more LCBs (line control blocks), which
are used by the internal TCAM logic to perform line management. The LCBs in
the dump are given in order by relative line number.

202 OS TCAM User’s Guide

LCB hhhhhh is the starting address of this LCB.

KEY/QCBA hhhhhhhh
The first byte is the key of this LCB. The next three bytes contain the address
of its QCB.

PRI/LINK hhhhhhhh
The first byte is the priority of this LCB. The next three bytes contain the link
address to the next element.

RSKEY/STCBA hhhhhh
The first byte is the receive scheduler key. The next three bytes contain the
address of the first STCB when the LCB is a QCB.

RSPRI/RSLNK hhhhhhhh
The first byte is the receive scheduler priority. The next three bytes contain the
address of the next item in the chain.

EOLTD/TSOB hhhhhhhh
The first two bytes contain the end-of-polling list, and the time-delay reference
time. The third byte is the time-delay queue offset to the QCB address (always
X‘14’ for an LCB). The fourth byte is a status byte used by TSO.

CHAIN/INSRC hhhhhhhh
The first byte is a status byte used by TCAM. The next three bytes contain the
in-source chain.

SCBO/SCBDA hhhhhhhh
The first byte is the offset to the current SCB (station control block). The next
three bytes contain the address of the SCB directory.

ISZE/FSBFR hhhhhhhh
The first byte is the count of reserved idles. The next three bytes contain the
address of the first buffer assigned to this line.

FLAGS/SENSE hhhhhhhh is the start of the IOB contained in the LCB. The
first and second bytes are IOS flags. The last two bytes are the sense bytes.

ECBCC/ECBPT hhhhhhhh
The first byte is the ECB completion code. The next three bytes contain the
address of the ECB.

FLAG3/CSW
The first byte is an IOS flag byte. The next seven bytes are the last seven bytes
of the CSW.

SIOCC/START hhhhhhhh .
The first byte is the start I/O condition code. The last three bytes contain the
address of the start of the channel program area.
DCBPT hhhhhhhh is the address of the DCB for this line.
RCQCB hhhhhhhh is the address of the QCB to tpost a recalled buffer to IOS.

INCAM/ERRCT hhhhhhhh are two halfword IOS error counters.

Appendix C. TCAM Formatted ABEND Dump 203

UCBX/RCBFR hhhhhhhh
The first byte is the UCB index. The last three bytes contain the address of a
recalled buffer or the last buffer serviced by a PCIL.

RECOF/STATE hhhhhhhh
The first two bytes contain the offset into the current block. The last two bytes
are the LCB status bytes.

TSTSW/RECAD hhhhhhhh
The first byte is a test-and-set switch. The last three bytes contain the address
of the current message block.

ERBKY/ERBQB hhhhhhhh
The first byte is the key of the ERB. The next three bytes contain the address
of the QCB to which the ERB is tposted.

ERBPY/ERBLK hhhhhhhh
The first byte is the priority of this ERB. The next three bytes contain the
address of the next item in the chain.

ERBST/ERBCH hhhhhhhh
The first byte is the ERB status byte. The next three bytes contain the address
of a chain of assigned buffers.

ERBCT/TTCIN hhhhhhhh
The first two bytes contain the count of buffers requested by this ERB. The
second two bytes contain the index into the termname table of the currently
connected terminal.

MSGFM/SCBA hhhhhhhh
The first byte is used to control BSC lines. The next three bytes contain the
address of the current SCB.

ERMSK/INVPT hhhhhhhh
The first byte is an error-recording mask. The next three bytes contain the
address of the current entry in the invitation list.
TPCD is a three-word list of TP operation codes for the CCWs.
SNSV/CSWSV hhhhhhhh hhhhhhhh
The first byte is a save area for the sense byte. The last seven bytes comprise a

save area for the CSW.

ERCCW is a three-doubleword area for ERP (error-recovery procedure)
CCWs.

The following section gives the checkpoint DCB.

DCB hhhhhh (CHECKPOINT)
DEVICE INTERFACE
D/S INTERFACE
FOUNDATION
EXTENSION

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hh
hhhhhh hhhhhhhh hhhhhhhh

204 OS TCAM User’s Guide

DCB hhhhhh (CHECKPOINT) is the starting address of the checkpoint DCB.

DEVICE INTERFACE
This section is reserved.
D/S INTERFACE contains the data set organization, the address of the AVT,

and the address of the exit list. The following table shows these fields, their
relative offsets from the beginning of the DCB, their contents, and their size.

+14
Reserved
+18 +1A . .
Reserved Data set organization
+1C +1D
Reserved Address of the AVT
20 Reserved
+24 +25
Reserved Address of the exit list
For more detailed information of these fields, see System Control Blocks.
FOUNDATION contains fields that are changed during open time. Before open,
these fields contain the DDNAME character string, the open flags, the 10S error
flags, and the macro instruction reference. After open, they contain the offset of
the DD entry from the beginning of the TIOT, the macro instruction reference,
the 10S error flags, the address of the DEB, and open flags. The following two
tables show this area and its contents before and after open.
Before Open:
+28 i
DDNAME character string
2c]
+30 31 10S error +32
Open flags fla Macro instruction reference
gs
Note: During open, the I0S error flags field and the macro-instruction
reference field are relocated and the last three bytes become part of the
EXTENSION section.
+28 Offset of DD entry from +2A . i i
beginning of the TIOT) Macro instruction reference
+2C +2D
:f;ise'm' Address of the DEB
+30
Open
flags

For more detailed information on these fields, see System: Control Blocks.
EXTENSION contains the OPTCD= value of the DCB. The remainder of this

area is reserved. The following table shows these fields, their relative offsets from
the beginning of the DCB, their contents, and their size.

Appendix C. TCAM Formatted ABEND Dump 205

+31

Reserved

+34

OPTCD=value

+35

Reserved

+38

Reserved

For more detailed information on these fields, see System Control Blocks.

The message queues DCB follows.

DCB hhhhhh (MESSAGE QUEUE)

DEVICE INTERFACE
D/S INTERFACE
FOUNDATION
EXTENSION

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh ‘hhhhhhhh

hhhhhh hhhhhhhh hhhhhhhh

DCB hhhhhh (MESSAGE QUEUES) is the starting address of the message
queues DCB.

DEVICE INTERFACE
This section is reserved.

D/S INTERFACE contains the data set organization, the address of the AVT, the
threshold value of the percentage of the nonreusable disk message queue records
to be used before a flush closedown of the system is initiated, and the address of
the exit list. The following table shows these fields, their relative offsets from the
beginning of the DCB, their contents, and their size.

+14

Reserved

+18

Reserved

+1A
Data set organization

+1C

+1D
Reserved

Address of the AVT

+20

+21

Reserved

+24

+25
Reserved

Address of the exit list

206

OS TCAM User’s Guide

For more detailed information about these fields, see System Control Blocks.

FOUNDATION contains fields that are changed during open time. Before open,
these fields contain the DDNAME character string, the open flags, the I0S error
flags, and macro instruction reference. After open, they contain the offset of the
DD entry from the beginning of the TIOT, the macro instruction reference, the
I0S error flags, the address of the DEB, and open flags. The following two tables
show this area and its contents before and after open.

Before Open:

+28 . .
DDNAME character string
[+2¢ 7
+30 +31 +32
Open flags 10S error Macro instruction reference
flags

Note: During open, the 10S error-flags field and the macro instruction field
are relocated and the last three bytes become part of the EXTENSION section.
After Open:

+28 Offset of DD entry from +2A . .

beginning of the TIOT Macro instruction reference
+2C +2D
:gise"m Address of the DEB
+30 Open
flags
For more detailed information about these fields, see System Control Blocks.
EXTENSION contains the OPTCD= value of the DCB. The remainder of this
area is reserved. The following table shows these fields, their relative offsets from
the beginning of the DCB, their contents, and their size.
+31
Reserved
+34 +35
OPTCD=value Reserved
+38

Reserved

For more detailed information on these fields, see System Control Blocks.

Appendix C. TCAM Formatted ABEND Dump 207

TN

Appendix D. Device Configurations Supported by TCAM

IBM 1030 Data Collection System

IBM 1050 Data Communication System

IBM 1060 Data Communication System

IBM 2740 Communication Terminal

IBM 2740 Model 2 Communication Terminal
IBM 274| Communication Terminal

IBM 2760 Optical Image Unit

IBM 2260 Display Complex (Remote)

IBM 2265 Display Complex (Remote)

AT&T 83B3 Selective Calling Stations

§70]t WU Plan II5A Outstations
Sfﬂf TWX Models 33 ond 35
top World Trade Telegraph Terminals

IBM 2770 Data Communication System
IBM 2780 Data Transmission Terminal
IBM 1130 Computing System

IBM System/360 Model 20

IBM System/360 Models 25 and above

2701
BSC

IBM 1030 Data Collection System

IBM 1050 Data Communication System
IBM 1060 Data Communication System
IBM 2740 Communication Terminal
cPU 2702 IBM 2740 Model 2 Communication Terminal
IBM 274| Communication Terminal
IBM 2760 Optical Image Unit

AT&T 83B3 Selective Calling Stations
WU Plan lI5A Outstations

TWX Models 33 ond 35

World Trade Telegraph Terminals

2703
IBM 1030 Date Collection System

IBM 1050 Data Communication System
IBM 1060 Data Communication System
IBM 2740 Communication Terminal
IBM 2740 Model 2 Communication Terminol
IBM 274] Communication Terminal
1BM 2770 Data Communication System
2848 : IBM 2780 Data Transmission Terminal
1BM 1130 Computing System

IBM System.”360 Model 20

IBM System/360 Models 25 and above
AT&T 83B3 Selective Calling Stations
WU Plan [I5A Outstations

TWX Models 33 and 35

World Trade Telegroph Terminals

18M 2260 Display Complex (Local)

Appendix D-Part 1

Appendix D. Device Configurations Supported by TCAM 209

Audio

Channel Type TCU Response Line Type
Unit
1BM 2701 IBM 2702 IBM 2703
Data Adapter | Transmission | Transmission| [BM 7770
Station Type Multiplexer Selector Unit Control Control Model 3 [Switched | Nonswitched Notes
1BM 1030 Data Collection Auto Poll X X X X The IBM Digital Time Out
System feature cannot be attached
X X X X X through an IBM 2701 TCU.
I1BM 1050 Data Auto Poll X X X X
Communication System
X X X X X X
IBM 1060 Data Auto Poll X X X X
Communication System
X X X X X

1BM 2260-2848 Display X X X

Complex (Remote)

IBM 2260-2848 Display X X

Complex (Local)

I1BM 2265-2845 Display X X X

Complex (Remote)

IBM 2740 Model 1 Auto Poll Two Types:

Communication Terminal X X X X 2740 with station control
2740 with station control and
record checking
Four Types:

. 2740 basic

X X X X X 2740 with station control
2740 with record checking
2740 with station control and
record checking
Four Types, all with dial:
2740

X X X X X 2740 with transmit control
2740 with record checking
2740 with transmit control
and record checking

1BM 2740 Model 2 Auto Poll Four Types:

Communication Terminal 2740
2740 with record checking

X X X X 2740 with buffer receive -
2740 without buffer receive
(requires line slowdown feature)
Four Types:
2740
X X X X X 2740 with record checking
2740 with buffer receive
2740 without buffer receive
IBM 2741 Communication The attention feature is not
Terminal supported, and the break
X X X X X X feature is supported only if the
CPU is sending and the terminal
has not entered data when the
break is issued.

210 OS TCAM User’s Guide

Appendix D-Part 2

Audio

Channel Type TCU Response Line Type
Unit
IBM 2701 1BM 2702 1BM 2703
. Data Adapter | Transmission | Transmission [IBM 7770
Station Type Multiplexer Selector Unit Control Control Model 3 |Switched | Nonswitched Notes

IBM 2760 Optical Image X X Attached to a 2740 Model 1

Unit with record checking

IBM 2770 Data X X X X X BSC transmission using either

Communication System ASCII or EBCDIC code

IBM 2780 Data Transmission X X X X X BSC transmission using ASCH,

Terminal EBCDIC, or 6-bit code

1BM 1130 Computing System X X X X X BSC transmission

IBM System/360 Model 20 X X X X X BSC transmission using either
ASCII or EBCDIC code

IBM System/360 Models 25 BSC transmission and point-to=-

and above X X X X X point lines only

AT&T 83B3 Selective X X X X X

Calling Stations

Western Union Plan 115A

Outstations X X X X X

TWX Models 33 and 35 X X X X X Teletype terminals, dial
service (8-level code)

World Trade Telegraph Control unit must incorporate

Terminals X X X X X a WTTA

Audio terminals X X X Example: IBM 2721 Portable
Audio Terminal

Appendix D-Part 3

Appendix D. Device Configurations Supported by TCAM 211

accepting: the process in which a destination station acquires
a message transmitted to it from the central computer. Enter-
ing and accepting are functions of a station.

access method: a combination of an access technique (either
queued or basic) and a given data set organization (for instance,
sequential, partitioned, indexed sequential, or direct) that
allows the programmer to transfer data between main storage
and [/0 devices.

addressing characters: identifying characters, sent by the
computer, that cause a particular station (or component) to be
selected to accept a message sent by the computer.

application program: a user-provided program that processes
the text portions of messages. Application programs run as-
ynchronously with the message control program, and are usual-
ly located in another partition or region of main storage.
TCAM application programs are optional; there may be many
or none, depending on the needs of the user.

available-unit queue: a queue in main storage to which all
buffer units are assigned initially (that is, before allocation to
TCAM lines and application programs requiring buffers).
Emprty buffer units (that is, buffer units whose contents have
been processed by the incoming or outgoing group of an MH,
and that are not assigned to the main-storage message queues
data set) are returned to the available-unit queue, from which
they are reallocated.

binary synchronous communications (BSC): data trans-
mission in which character synchronization is controlled by
timing signals generated by the device that originates a message
(and the device that obtains the message recognizes the sync
pattern at the beginning of the transmission—the devices are
locked in step with one another); contrast with start-stop
transmission.

block: that portion of a message terminated by an EOB or
ETB line-control character or, if this is the last block in the
message, by an ETX or EOT line-control character. When
end-of-block checking is specified in the STARTMH macro,
messages are checked for certain types of transmission and
user-specified logical errors on a block-by-block basis.

buffer: an area in main storage into which a message segment
is read, or from which a message segment is written. Buffers
are temporary data-holding areas that are used to compensate
for the difference between the rate at which data can be entered
from or accepted by a station and the rate at which it can be
processed by the central processing unit; buffers also may be-

Glossary

used as work areas in TCAM. The size of TCAM buffers is
designated by the user. (See also hardware buffer.)

buffer allocation: the assignment of buffers by TCAM to
lines or application programs in preparation for reception of
message segments from stations on the lines or from application
programs. (Sce also dynamic buffer allocation and static buff-
er allocation.)

buffer deallocation: for a sending operation, deallocation
consists of returning the units that compose the buffer to the
available-unit queue after the data in these units has been sent
to its destination station or application program; for a receiving
operation, deallocation consists of transferring full buffers from
the line or application program to which they were assigned to
the incoming group of the MH that is to process the message
segments they contain.

buffer prefix: a control area contained within each TCAM
buffer. The prefix for the buffer containing the first segment of
a message is 30 bytes, while the prefix for each buffer contain-
ing a subsequent segment of the message is 23 bytes. The user
must allow room for the buffer prefix when he specifies his
buffer size. TCAM fills the prefix area with buffer control
information. ’

buffer unit: the basic building block from which TCAM buff-
ers are constructed. All units in a particular TCAM system are
the same size; this size is specified by the KEYLEN= operand
of the INTRO macro.

buffer-unit pool: all the buffer units in a particular TCAM
system together constitute the buffer-unit pool for that system.
The number of units in the pool is equal to the sum of the integ-
ers specified by the LNUNITS= and MSUNITS= operands of
the INTRO macro.

buffered terminal: a terminal having a hardware buffer. As
used in this book, a buffered terminal is an IBM 2740 Model 2
station or IBM 2770 station whose TERMINAL macro specifies
BFDELAY=integer. When the BFDELAY= operand of TER-
MINAL is coded, messages are sent to the station segment-by-
segment; after a segment is sent, the message control program
pauses before sending the next segment to allow the station's
buffer to empty. During this pause, the MCP may send seg-
ments to other stations on the line.

central processing unit (CPU): a unit of a computer that
controls interpretation and execution of instructions.

channel program block (CPB): a TCAM control block used

Glossary 213

in the transfer of the data between buffer units and message
queues maintained on disk. The CPB= operand of the INTRO
macro specifies the number of CPBs to be provided in a TCAM
system.

checkpoint data set: an optional TCAM data set that con-
tains the checkpoint records used to reconstruct the MCP envi-
ronment after closedown or system failure, when the TCAM
checkpoint/restart facility is utilized.

checkpoint records: records. located in the checkpoint data
set, that are used to reconstruct the MCP environment upon
restart following closedown or system failure. The four types of
checkpoint records are: environment records, incident records,
checkpoint request records, and a control record.

checkpoint request record: a checkpoint record taken as a
result of execution of a CKREQ macro issued in an application
program: the record contains the status of a single destination
queue for the application program. The latest checkpoint re-
quest record for a message queue is used during restart to cause
sending from that queue to the application program to begin
with the message that follows the last message sent to the pro-
gram from that queue at the time the checkpoint request record
was taken, rather than with the message following the last
message marked serviced.

checkpoint/restart: a TCAM facility that records the status
of the teleprocessing network at designated intervals or follow-
ing certain events. Following system failure or closedown, the
checkpoint/restart facility uses the records it has taken to re-
store the message control program environment as nearly as
possible to its status before the failure or closedown.

closedown: an orderly deactivation of the MCP by either an
MCPCLOSE macro instruction issued in an application pro-
gram or an operator command. See quick closedown and flush
closedown.

cold restart: start-up of a TCAM message control program
following either a flush closedown, a quick closedown, or a
system failure. A cold restart ignores the previous environment
(that is, the MCP is started as if this were the initial start-up),
and is the only type of restart possible when no
checkpoint/restart facility is used.

component: an 1/0 device associated with a station.

computer: in this publication, the central processing unit in
which the TCAM message control program is located.

continuation restart: a restart of the TCAM message control

program following termination of the message control program

because of system failure; the TCAM checkpoint/restart facility
restores the MCP environment as nearly as possible to its condi-
tion before failure.

214 OS TCAM User’s Guide

control characters: characters transmitted over a line that are
not message data, but which cause certain control operations to
be performed when encountered by the computer, transmission
control unit, or station; among such operations are polling and
addressing, message delimiting and blocking, transmission-
error checking, and carriage return.

control record: arecord, included in a checkpoint data set,
that keeps track of the correct environment, incident, and
checkpoint request records to use for reconstructing the mes-
sage control program environment during restart.

data control block (DCB): an area of main storage that
serves as a logical connector between the problem program and
a data set. The data control block also can provide control
information for any transfer of data. A data control block must
be created for each TCAM data set except a message queues
data set residing in main storage; a DCB macro instruction
creates a data control block.

data set:

1. a named, organized collection of logically related records
(program data set). The information is not restricted to a
specific type, purpose, or storage medium. Among the data
sets specifically related to TCAM are the line group data
sets, the message queues data sets, the checkpoint data set,
the message log data set, and the input and output data sets
for a TCAM-compatible application program.

2. adevice containing the electrical circuitry necessary to
connect data processing equipment to a communication
channel; also called a subset, Data-Phone*,
modulator/demodulator, or modem.

dead-letter queue: the destination queue for the station or
application program named by the DLQ= operand of the IN-
TRO macro instruction. If an invalid destination is detected in
a message header by a FORWARD macro instruction, and if no
user exit is specified in the FORWARD macro, that message is
sent to the dead-letter queue.

delimiter macro instruction: a TCAM macro instruction that
classifies and identifies sequences of functional macro instruc-
tions and directs control to the appropriate sequence of func-
tional macro instructions.

descriptor code: under Multiple Console Support, indicates
the means of message presentation and message deletion on
display devices.

destination: the place to which a message being handled by a
TCAM message handler is to be sent. A destination may be
either a station defined by a TERMINAL macro, a group of
stations defined by a TLIST macro, or an application program

*Trademark of the American Telephone & Telegraph Co.

defined by a TPROCESS macro. One or more destinations
may be specified in ficlds of the message header that are
checked by a FORWARD macro, or a single destination may be
specified for all messages handled by a particular inheader
subgroup by means of the DEST= operand of a FORWARD
macro issued in that subgroup.

destination field: a ficld in a message header containing the
name of a station or application program to which a message is
directed.

destination queue: a qucue on which messages bound for a
particular destination are placed after being processed by the
incoming group of a message handler. A separate destination
queue is created for each station defined by a TERMINAL
macro specifying queuing by terminal; one for each line whose
stations are defined by TERMINAL macros specifying queuing
by line: and one for each application-program process entry
(defined by a TPROCESS macro) to which the application
program may direct GET or READ macros. Destination
queues are maintained in message queues data sets, which may
be located on disk or in main storage. Queuing messages by
destination permits overlap of line usage in [/O operations. See
also process queue.

destination station: a station that accepts a message sent to it
by the outgoing group of the message handler that is specified
for the line to which the accepting station is assigned.

distribution entry: an entry in the terminal table associated
with a distribution list. A distribution entry is created by a
TLIST macro.

distribution list: a list of single, group, cascade, or process
entries; when a message is directed to the distribution entry
associated with this list, TCAM sends the message to each
destination named in the list.

dynamic buffer allocation: the assignment of buffers to a
line on an as-needed basis, after a message has started coming
in over the line. Dynamic allocation occurs following program-
controlled interruptions, and is specified by the PCI= operand
of the line group DCB macro. See also static buffer allocation.

end-of-address (EOA) character:

1. a hardware generated line-control character or characters
transmitted on a line to indicate the end of nontext charac-
ters (for example, addressing characters).

2. a TCAM character that must be placed in a message if the
system is to accommodate routing of that message to several
destinations; the character must immediately follow the last
destination code in the message header; and must also be
specified by the EOA= operand of the FORWARD macro
for the message.

entering: the process in which a station places on the line a
message to be transmitted to the central computer (a station
enters and accepts messages, while a computer sends and receives
messages).

environment record: a record of the total teleprocessing
environment at a single point in time. The environment record
resides in the checkpoint data set; at restart time, an environ-
ment record is updated by the contents of incident records that
were taken after the environment record was taken, and the
updated environment record is then used to reconstruct the
message control program environment as it existed before MCP
closedown or system failure.

error-recovery procedures (ERP): aset of internal TCAM
routines that attempt to recover from transmission errors.

FEFO (first-ended first-out): a queuing scheme whereby
messages on a destination queue are sent to the destination on a
first-ended first-out basis within priority groups. That is, higher-
priority messages are sent before lower-priority messages; when
two messages on a queue have equal priority, the one whose
final segment arrived at the queue earliest is sent first.

FIFO (first-in first-out): a queuing scheme whereby equal-
priority messages on the same destination queue are sent in the
order that their first segments arrived at the queue.

flush closedown: a closedown of the TCAM message control
program during which incoming message traffic is suspended
and queued outgoing messages are sent to their destinations
before closedown is completed; this form of termination is
known as a flush closedown because unsent messages are
flushed from the message queues. See also quick closedown.

folded table: a table that recognizes as valid either uppercase
or lowercase characters. i

functional macro instructions: TCAM macros that perform
the specific operations required for messages directed to the
message handler. See also delimiter macro instructions.

group entry: an entry in the terminal table associated with a
group of terminals having the group-addressing hardware fea-
ture.

hardware buffer: a buffer that is located in a station, as op-
posed to the buffers for the TCAM MCP, which are located in
the computer. The IBM 2740 Communication Terminal Model
2, for example, contains a hardware buffer that accommodates
up to 120 characters. See also buffered terminal.

header: that portion of a message containing control informa-

tion for the message; a header might contain one or more desti-
nation fields, the name of the originating station, an input

Glossary 215

sequence number, a character string indicating the type of
message, a priority level for the message, etc. The message
header is operated on by macros in the inheader and outheader
subgroups of the message handler.

header buffer: abuffer containing a header segment.

header segment: a message segment containing all or part of
the message header.

identification characters (ID characters): characters sent
by a BSC station on a switched line to identify the station. ID
characters can also be assigned to the computer (by the
CPUID= operand of the INVLIST macro); in this case, the
computer and the station can exchange 1D sequences. TWX
stations also use ID characters.

idle: describes a line that is not currently available for trans-
mission of data because IDLE was coded in the OPEN macro
for the line group data set containing the line. Such a line may
be activated by a STARTLINE operator command.

inactive station: a station that is currently ineligible for enter-
ing and/or accepting messages. A station may be inactive for
entering or inactive for accepting, or both; the status of a sta-
tion is determined by the status of the line it is on, by a special
character (+ or -) coded in the invitation-list entry for the
station, by the presence or absence of a HOLD macro in the
outgoing group of the message handler handling outgoing mes-
sages for this station, and by the five operator commands
(ACTVBOTH, ENTERING, NOENTRNG, NOTRAFIC,
SUSPXMIT) that directly affect the station’s status.

incident record: a checkpoint record residing in the check-
point data set on a DASD; an incident record logs a change in
station status or in the contents of an option field that occurred
since the last environment record was taken. Incident records
update the information contained in environment records at
restart time after a closedown or system failure.

incoming group: that portion of a message handler designed
to handle messages arriving for handling by the message control
program. See also outgoing group.

incoming message: a message being transmitted from a sta-
tion to the computer.

input: of or related to a message transmission that involves
entering data at a station or receiving data at the computer.

input data set: alogical data set for a TCAM-compatible
application program. The input data set contains all messages
or records being sent to the application program from a single
process queue. Though it is not located in a physical medium,
the input data set requires a DD statement and a DCB macro

216 OS TCAM User's Guide

for its definition and must be activated and deactivated by
OPEN and CLOSE macros. See also outpur data ser.

input sequence number: a means of ensuring that messages
are received from a source in the correct order; the user may
place a sequence number in the header of each message entered
by a station or application program, and code a SEQUENCE
macro in the incoming group of his message handler. The
SEQUENCE macro checks the sequence number for each
message: if the number is not one more than that assigned to
the previous message received from that origin, a bit is turned
on in the message error record.

inquiry processing: a TCAM application in which the mes-
sage control program receives a message from a station, then
routes it to an application program that processes the data in
the message and generates a reply; the reply is routed by the
message control program to the inquiring station. Response
time often may be shortened by specifying lock mode (by a
LOCK macro in the message handler) and by locating the mes-
sage queues data set containing the queues for the application
program in main storage.

intercepted station: a station to which no messages may be
sent. A station is intercepted by issuing a HOLD macro instruc-
tion in the outmessage subgroup of a message handler; the
suspension is either for a specified time interval or until either
an operator command or an application-program macro
instruction-is issued to release messages held for the intercepted
station.

invalid destination: a destination specified for a message that
does not correspond to a valid terminal-table entry.

invitation: the process in which the computer contacts a sta-
tion in order to allow the station to transmit a message if it has
one ready.

invitation delay: a period of time during which invitation is
suspended to allow transmission of outgoing messages for lines
whose line group DCB has CPRI=R specified. This delay is
observed for all such stations on a line when the end of the
invitation list for that line is reached. The delay in polling is
observed for such stations whether or not the computer has any
messages to send them. If no invitation delay is specified for
such stations, no messages can be sent to them.

invitation list: a series of sets of polling characters or identifi- -
cation sequences associated with the stations on a line; the
order in which sets of polling characters are specified (in the:
INVLIST macro for the line) determines the order in which
polled stations are invited to enter messages on the line.

line: the communications medium linking the computer to one
or more remote stations; message transmission occurs over this
medium.

line control: the scheme of operating procedures and control
signals by which a telecommunications system is controlled.

line control block (LCB): an area of main storage contain-
ing control information for operations on a line; one LCB is
maintained by TCAM for each line in the system.

line-control characters: characters that control transmission
of data over a line or control the state of the devices on the line;
for example, line-control characters delimit messages, cause
transmission-error checking to be performed. and indicate
whether a station has data to send or is ready to receive data.

line group: a set of one or more communications lines of the
same type, over which stations with similar characteristics can
communicate with the computer.

line group data set: a message control program data set
consisting of all the lines in a line group; the messages that are
transmitted on these lines constitute the data in this data set. A
line group data set is defined by a line group DCB macro in-

struction, and by a DD statement for each line in the line group.

line group DCB: a data control block created by a line group
DCB macro instruction; information in the data control block
defines the line group to TCAM.

local station: a station whose control unit is connected direct-
ly to a computer data channel by a local cable. See remote
Station.

lock mode: a TCAM facility, invoked in a message handler by
the LOCK macro, whereby a station entering an inquiry mes-
sage for an application program is held on the line by the mes-
sage control program until a response has been returned to it by
the application program. Using lock mode decreases response
time because there are no interruptions on the line before a
response is returned. If LOCK is executed and CONV=YES is
coded in the STARTMH macro, lock mode is in effect for the
station. A station may be placed in lock mode either for the
duration of a single inquiry and response (message lock mode)

or for the duration of several inquiry-response cycles (extended ‘

lock mode). The type of lock mode is specified in the LOCK
macro.

log: a collection of messages or message segments placed on a
secondary-storage device for-accounting or data collection
purposes. The TCAM logging facility is invoked by a function-
al macro instruction issued in a message handler.

log data set: a data set consisting of the messages or message
segments recorded on a secondary-storage medium by the
TCAM logging facility. A log data set is defined by means of a
BSAM DCB macro instruction that is issued with the DCB

macro instructions defining the line group data sets, the mes-
sage queues data sets, and the checkpoint data set.

logtype entry: an entry in the terminal table associated with a
quecue on which complete messages reside while awaiting trans-
fer to the logging medium (a logtype entry is not needed if
message segments only are to be logged). A logtype entry is
created by a LOGTYPE macro.

message: a unit of data received from or sent to a station that
is terminated by an EOT or ETX control character or, if the
CONV= operand of the STARTMH macro is coded
CONV=YES, by an EOB or ETX control character. A TCAM
message is often divided into a header portion, which contains
control information, and a text portion, which contains the part
of the message of concern to the party ultimately receiving it.

message control program (MCP): a sect of user-defined
TCAM routines that identifies the teleprocessing network to the
System/360 Operating System, establishes the line control
required for the various kinds of stations and modes of connec-
tion, and controls the handling and routing of messages to fit
the user’s requirements.

message error record: five bytes assigned to each message
being processed by a message handler; these bytes indicate
physical or logical errors that have occurred during transmis-
sion on the line or during subsequent processing or queuing of
the message, and are checked by error-handling macros in the
inmessage and outmessage subgroups of a message handler.

message handler (MH): a sequence of user-specified TCAM
macro instructions in the message control program that exam-
ine and process control information in message headers, and
perform functions necessary to prepare message segments for
forwarding to their destinations. One message handler must be
assigned to each line group by the MH= operand of the line
group DCB macro, and one must be assigned to each TCAM-
compatible application program by the MH= operand of the
PCB macro. The incoming group of an MH handles messages
received from either an originating station or an application
program; the outgoing group of an MH handles messages be-
fore their being sent to a destination station or application
program.

message priority: refers to the order in which messages in a
destination queue are transmitted to the destination, relative to
each other. Higher-priority messages are forwarded before
lower-priority messages. Up to 255 different priority levels may
be assigned to a single destination (by the LEVEL= operand of
the TERMINAL or TPROCESS macro). The priority for each
message sent to the destination may be specified in the message
header or assigned by a PRIORITY macro; in either case, a
PRIORITY macro should be coded in the inheader subgroup
handling the message.

Glossary 217

message queue: sce destination queie.

message queues data set: a TCAM data set that contains one
or more destination queues. A message queues data set con-
tains messages that have been processed by the incoming group
of a message handler and are waiting for TCAM to dequeue
them, route them through an outgoing group of a message
handler. and send them to their destinations. Up to three mes-
sage queues data sets (one in main storage, one on reusable
disk. one on nonreusable disk) may be specified for a TCAM
message control program,. '

message segment: the portion of a message contained in a
single buffer.

message switching: a telecommunications application in
which a message is received from a remote station, stored until
a suitable outgoing line is available, and then transmittted to its
destination station. TCAM message switching can be handled
entirely by the message control program.

nontransparent mode: a mode of binary synchronous trans-
mission in which all control characters are treated as control
characters (that is, not treated as text). See transparent mode.

on-line test (OLT): an optional TCAM facility that permits
either a system console operator or a remote-station operator to
test transmission control units and remote stations to find out if
they work properly.

operator command: a command entered either at an operator
control station or at the system console to examine or alter the
status of the telecommunications network during execution.

operator control station: a station eligible to enter operator
commands. An application program and the system console
may also serve as operator control stations. Operator control
stations are designated as such by the PRIMARY = operand of
the INTRO macro and by the SECTERM= operand of the
TERMINAL and TPROCESS macros.

option field: a storage area containing data relating to a par-
ticular station, component, line, or application program; cer-
tain message handler routines that need source- or destination-
related data to perform their functions have access to data in an
option field. User-written routines also have access to data in
an option field. Option fields are defined by OPTION macros
and initialized for each station, line, component, or application
program by the OPDATA= operand of the TERMINAL or
TPROCESS macro.

origin: a station or application program from which a message,
or other data originates. See also destination.

outgoing group: that section of a message handler that manip-

218 OS TCAM User’s Guide

ulates outgoing messages after they have been removed from
their destination queues. The outgoing group has three types of
subgroup—the outheader subgroup, which executes on outgoing
header segments; the outbuffer subgroup, which executes on
each outgoing segment; and the outmessage subgroup, which
executes on the entire message. Sece also incoming group.

output data set: alogical data set for a TCAM-compatible
application program. The output data set contains the mes-
sages or records returned from the application program to the
message control program by a process entry in the terminal
table. An output data set is defined by a DD statement and a
DCB macro, and must be activated and deactivated by OPEN
and CLOSE macros. See also input data set.

output DCB: a data control block created by an output DCB
macro. One output DCB is required for each-output data set.

output sequence number: a number placed in the header of a
message by TCAM that determines the order in which messages
were sent to a destination by the computer. When specified in
an outheader subgroup, the SEQUENCE macro causes an
output sequence number to be placed in the header of each
outgoing message; this sequence number is one greater than the
sequence number for the last message sent to this destination.
See also input sequence number.

polling: a non-contention line management method whereby
the computer invites stations to enter messages. The computer
contacts stations in the order specified by the invitation list;
each station contacted is invited to enter messages.

polling characters: a set of identifying characters peculiar to
either a station or a component of that station; a response to
these characters indicates to the computer whether the station
has a message to enter.

priority: see message priority and transmission priority.

problem determination: The act of pointing to the malfunc-
tioning hardware unit or program and ultimately determining
who has the responsibility for fixing the trouble.

process queue: a destination queue for an application pro-
gram (see destination queue). A process queue is defined by a
TPROCESS macro.

queue: a set of items consisting of:

1. a queue control block (an area in main storage containing
control information for the queue), and

2. one or more ordered arrangements-of items (the items may
be messages, main-storage addresses, etc.).

quick closedown: a closedown of the TCAM message control

program that entails stopping message traffic on each line as
soon as transmission is complete for any messages being sent or
received at the time of the request for closedown.

read-ahead queue: an arca of main storage in which the
message control program plans work units in advance of their
being requested by the application programs.

receiving: the process in which the central computer obtains a
message from a remote station (the message is entered by the
station). Receiving and sending are functions of the central
computer.

record: a logical unit of data, the length of which is defined by
the user through the use of operands on the input or output
DCB macro and delimiting characters in the message.

relative line number: a number assigned by the user to a
communications line of a line group at system generation time
or MCP execution time. If a line group is defined at system
generation time by a UNITNAME macro, the lines in the group
are assigned relative line numbers according to the order in
which their hardware addresses are specified in the UNIT=
operand of UNITNAME:; the line whose address is specified
first is relative line number one, that address specified second is
relative line number two, etc. If a line group is defined at MCP
execution time by concatenated DD statements, the order in
which the DD statements for the lines in the line group are
arranged determines the relative line numbers for the lines.
The line whose DD statement appears first is relative line num-
ber one, the statement that appears second is relative line num-
ber two, etc.

remote station: a station that is connected to a computer data
channel through either a transmission control unit, an audio
response unit or common carrier facilities. See also local
station.

retry: an error-recovery procedure in which the current block
of data (from the last EOB or ETB) is re-sent a prescribed
number of times, or until accepted or entered correctly.

routing code: under Multiple Console Support, indicates the
consoles to which the messages should be sent.

segment: the portion of a TCAM message contained in a
single buffer.

selection: the process whereby the computer contacts a re-
mote station to send it a message.

sending: the process in which the central computer places a
message on a line for transmission to a station (the station
accepts the message). Sending and receiving are functions of
the central computer.

sequence number: see inpur sequence number and ouiput
sequence number.

single entry: an entry in the terminal table associated with a
single station or station component; one such entry must be
created (by a TERMINAL macro) for cach station in the
TCAM system not defined by a group entry.

start-stop transmission: data transmission in which cach
character being transmitted is preceded by a special control
signal indicating the beginning of the sequence of data bits
representing the character, and is followed by another control
signal indicating the end of the data-bit sequence (character
recognition by the device that obtains the data depends on the
presence of these control signals for each character); contrast
with binary synchronous communications.

static buffer allocation: the assignment to a line, before
transmission over that line, of all buffers to contain the trans-
mitted data. When PCI=N or PCI=R is coded in the line group
DCB macro, the number of buffers specified by the BUFIN= or
BUFOUT= operand of the line group DCB macro instruction is
assigned to a line before incoming or outgoing transmission
begins on that line; once transmission has started, no more
buffers are available to handle the data involved in the trans-
mission.

station: either a remote terminal, or a remote computer used
as a terminal.

subblock: that portion of a BSC message terminated by an
ITB line-control character.

switched line: a communications line on which the connection
between the computer and a remote station is established by
dialing. Also known as a dial line.

symbol: in assembler language, a character or character string
used to represent addresses or arbitrary values. A symbol must
meet the following requirements:

1. A symbol may consist of no more than eight characters, the
first character being a letter (A through Z, $, #, or @), and
the other characters being either letters or digits.

2. No blanks or special characters are allowed in a symbol.

system interval: a user-specified time interval during which
polling and addressing are suspended on multipoint lines to
polled stations. The system interval is specified by the
INTVAL= operand of the INTRO macro, and may be changed
during TCAM initialization, by a SYSINTVL operator com-
mand. The INTERVAL operator command tells TCAM to
begin the system interval. The system interval minimizes un-
productive polling, minimizes CPU meter time, and synchron-
izes polling on the polled lines in the system. See also invitation
delay.

Glossary 219

terminal table: an ordered collection of information consist-
ing of a control field for the table and blocks of information on
each line, station, component, or application program from
which a message can originate or to which a message can be
sent.

text: that part of the message of concern to the party ultimate-
ly receiving the message (that is, the message exclusive of the
header. or control, information).

text segment: a portion of a message that contains no part of
the message header.

transmission: the transfer of coded data by an electromagnet-
ic medium between two points in a telecommunications net-
work.

transmission control unit (TCU): a control unit that serves
as an interface between communications lines and a computer
for logical operations. The transmission control units support-
ed by TCAM are the 2701 Data Adapter Unit Model 1, the 2702
Transmission Control Model 1, and the 2703 Transmission
Control Model 1.

transmission priority: refers to the order in which sending
and receiving occur, relative to each other, for a particular
station. Transmission priority is specified on a line-group basis
by the CPRI= operand of the line group DCB macro. The three
transmission priorities possible in TCAM are send priority,
equal priority, and receive priority. The exact meaning of each
priority depends upon the line configuration and type of sta-
tion. See also message priority.

220 OS TCAM User’s Guide

transparent mode: a mode of binary synchronous transmis-
sion in which all data, including normally restricted data-link
control characters, is transmitted only as specific bit patterns.
Control characters that are intended to be effective are preced-
ed by a DLE character.

unit: see buffer unit.

warm restart: a restart of the TCAM message control pro-
gram following either a quick or a flush closedown; the TCAM
checkpoint/restart facility restores the MCP environment as
nearly as possible to its condition before failure. See
checkpoint/restart.

work area: an area of storage related to an application pro-
gram that receives messages or records transferred to the appli-
cation program from the message control program by GET or
READ macros, and from which messages or records are trans-
ferred to the MCP by PUT or WRITE macros. The size of the
work area must be specified in the BLKSIZE= operand of the
input or output DCB macro associated with the data set whose
contents are being transferred to or from the work area. A
work area may be defined either statically (by a DC or DS
assembler instruction) or dynamically (by specifying locate
mode in the MACRF= operand of the input DCB macro).

work unit: the amount of data transferred from the message
control program to an application program by a single GET or
READ macro, or transferred from an application program to

_the MCP by a single PUT or WRITE macro. The work unit

may be a message or a record (or, for QTAM-compatible appli-
cation programs, a segment).

ABEND 75
activation of TCAM 52
finding problemsin 52—54
typical errors 53
aids
coding 17
diagnostic 75
problem determination 39
service 110 .
ALTDEST= operand 40, 44
application program 12
checking return codes in 43
checklist 28, 43
closing 40
coding conventions 39—41
coding hints 23
examining 39
how to code 23
interface definition 12
interface with MCP 12
issuing operator commands from 40
macro instructions 14
MH macros that affect 41—42
non-TCAM macros in 41
problems 39
support 12
typical errors 43
ways torun 12,40
work areasin 41
ATTACH macro 15
AVT, finding 76, 85

BLANK= operand 69
buffer
allocating dynamically 47
allocating statically 47
defining 9, 46
definition checklist 17, 19
finding current = 85
finding problems in 46
macros and operands to define 19
reasons for large 46
reasons for small 46—47
typical errors 49
buffer allocation
reasons for dynamic 10, 47
reasons for static 47
buffer prefix 135—136
buffer trace 132
activating 132
entry format 133
field meanings 133—135
formatted table 135
how todump 132
how to print 132
how toread 132—133
when to dump 132
when touse 132
buffer units 46
line unit/buffer considerations 48
reasons for large 46
reasons for less 46
reasons for more 47
reasons for small 47
TCAM unit-pool analysis 21—22
BUFIN= operand 48
BUFMAX= operand 48
BUFOUT= operand 48
BUFSIZE= operand 49

CANCELMG macro 35
reasons to use 35
restrictions 35
channel program block (CPB) 50
availability
coding considerations 50

Index

CHAP macro 40
checklist
application program 28, 43
buffer definition 17, 19
checkpoint/restart 25
diagnostic aids 27
MCP arrangement 18
message queues data set 24
operator control 26
checkpoint/restart 13, 98
checklist 25
checkpoint/restart data set
coding considerations 23
defining 23
how to dump 98
macros and operands 25
whentodump 98
CLOSE macro 8
coding considerations 53
closedown
abnormalend 75
flush close 8
normal end-of-day 145
quick close 8
CODE macro 4t
coding considerations
channel program blocks 50
checkpoint/restart dataset 25
CLOSE macro 53
functional macros 62
INTRO macro 6, 52
line group 49
OPEN macro 52
TERMINAL macro 44
cold start 8
commands, operator
CANCEL 40
DEBUG 72,112
ERRECORD 101
GOTRACE 72,111
NOTRACE 72,111
RESMXMIT 34
START 145
SUSPXMIT 35
SYSCLOSE 8
COMWRITE routine 14
COMWRTE= operand 110
configurations, device 209—211
console listings 140
how to use 140
when touse 140
CONT=operand 33
continuation start 8
CONTROL= operand 57
CONV=operand 33
core queue 79
COUNTER macro 41
CPB (see channel program block)
CPB= operand 52
cross-reference table 138
entry format 139
example 140
finding in a stand-alone dump 86, 139
when to dump 138—139
when to use 138—139
CROSSREF= operand 52
current buffer, finding 132—138
CUTOFF macro, reasons to use 34

data control block (see DCB)
data, gathering and interpreting from dumps 75
data sets

defining 49

disk 49,91

finding problems in 49

log 38,98

log message 100

Index

221

message queues 93

typical errors 51
DATETIME macro 50,59
DCB (data control block) 39

finding 86
DD statements, for line group 50
deactivation 52

finding problems in 52—54

typical errors 53—54
delimiter macros 56
DEST= operand 31, 40
destination QCBs 80
device configurations 209—211
device (outboard) records 103
diagnostic aids

checklist 27 .

macros and operands 23
disk 79
disk data set

defining extent 91

dump utility (IEDQXB) 99

preformatting 50

preformat utility (IEDQXA) 50
DISK= operand 52
disk message queues 90

dumpof 90
when to dump 90
disk queues

dumping specific 92
finding number of 92
nonreusable 54
reusable 55
DISP= operand 351
dispatcher ready queues 77
DLQ= operand 52
DTRACE= operand 52
dump
checkpoint/restart 98
disk message 90
high-speed 84
log data set 98
log message 100
log segment 99
low-speed 84
main-storage 75
message queues dataset 90
OBR/SDR file 101
printing formatted dump utility (IEDQXC)
reading the 76
secondary storage 90
stand-alone 84
TCAM formatted ABEND 179
TCAM libraries 109
using the 81
dynamic buffer allocation 47

ECB (event control block) 78
element request block (ERB) 122, 134
end-of-day closedown
how to obtain 145
why to obtain 145
end-of-day recording 107
how to read 108
when touse 108
end-of-day records 109
EODAD= operand 40
ERB (see element request block)
ERRORMSG macro 35
advantages of using 35—36
compared with MSGGEN macro 36—37
exit routine 36
error records (see 1/0 error records)
errors
finding in messages 29 .
recorded in the message error record 29
EXIT= operand 32

FEATURE= operand 54

fiush close 8

folded table 50

formatted dump 75, 179
fieldsin 76—81

222 OS TCAM User’s Guide

how to read 76

how touse 75

obtaining 75

when touse 76
formatted buffer trace table 135
formatted line 1/0 interrupt trace table 118
formatted subtask trace table 127
FORWARD macro 32
functional macros 62

coding considerations 62—65

GET macro 8

hardware problems 29
high-speed dump 84
HOLD macro

reasons touse 34

IEDQXA disk data set preformat utility 50
IEDQXB disk data set dump utility 99
IEDQXC print formatted dump utility 90
INBUF macro 56
INEND macro 56
information about TCAM, obtaining 3—4
INHDR macro 56
INITIATE macro 35, 56
INMSG macro 56
intensive mode, types 101
interface, application program 12
INTRO macro 6

coding considerations 52
INVLIST macro 4
INVLIST= operand 49
[/0 device records 103
1/0 error records

counter overflow 103

end-of-day 103

how to dump 102

how to format 102

how to obtain 102

permanent 103

temporary 103

types 103

when todump 102

JCL examples
ABEND data set to tape 76
assembling the high-speed dump 85
assembling the low-speed dump 84
dump checkpoint data set 98
dump log message data set 100
format and print OBR/SDR file dump 102
list queues from multivolume data set 92
list TCAM libraries dump 109
normal end-of-day closedown 145
operation and procedural techniques 70
print buffer trace 132
print dump tape 85
print line /O trace table 112
print log segments 99
print subtask trace table 119
print trace table dumps 110

KEYLEN= operand 49, 111

LC= operand 57

LCB, finding 86

LEVEL= operand 92

libraries, dump of TCAM 109
how to dump 109
when to dump 109

line control 44

line control areas 44
defining 44
typical errors 45

line group 49
coding considerations 49
DCB

e

DD statements for 50
defining 49

line 1/0 interrupt trace table 111
activating 111
entry format 113
field meanings 113—115

finding in a stand-alone dump 85

format 113
formatted 118

how to activate 111
how to deactivate 112
how todump [10
how to obtain 111
how to print 112
howtoread 113—118

in main storage 117
when todump 112
whentouse 112

line units, maximum

how to calculate 48
linkages

application program and MCP

TCAM control block 147

TCAM diagnostic aids 149
listings

console 140

terminal 140
LNUNITS= operand 52
LOCK macro 39
log data set

defining 98

when todump 99
log data set dump 99
LOG macro 38
log message data set

dumping 100

how to dump 100
log message facility, using 38
log segment data set

dumping 99

how todump 99
log segment facility, using 38
logged messages, how touse 101
logged segments, how to use 99
logging

how to use 38

when touse 38
LOGICAL= operand 33
LOGTYPE macro 45
low-speed dump™ 84
LPMOD= operand 40

macro instructions
application program
checkpointﬁestart data set 23
message control program 17
that use the scan pointer 59

148

you cannot code in the MH for an

application program 41
main-storage dumps 75
main-storage queues

advantages 10

disadvantages 10

maximum line units, how to calculate 48

MAXLEN= operand 32
MCP (see message control program)
MCPCLOSE macro 8
message, format of 57
message control program (MCP)
arrangement checklist 17
coding order 17
how to code 17
macro instructions 18
tasks in writing 44
message error record 23
contents of 29
finding 83
finding in a stand-alone dump 9
summary 29
using macros depending on 34
using to detect hardware errors

0

33

using to detect message errors 23
message flow 8
message format 57
design considerations 57
message handlers (MH) 11
defining 56
delimiter macros (see MH delimiter macros)
finding problemsin 56
for an application program 12, 41
functions 12
return codes 63—64
structure 11
typical errors 69
message handling for an application program 12, 41
messages in error, controliing what
happensto 29—33
message queues
coding considerations 23
defining 24
disk 90
message queues data set 93
checklist 24
dumping 93
dumping specific queues 93
how toread 94—98
how to use 93
macros and operands 23
printing 90
MH delimiter macros
INBUF macro 56
INEND macro 56
INHDR macro 56
INMSG macro 56
OUTBUF macro 56
OUTEND macro 56
OUTHDR macro 356
OUTMSG macro 56
STARTMH macro 56
MRELEASE macro 34
MSGEDIT macro 41
examples 66—68
summary 65
MSGFORM macro 41
MSGGEN macro 36
advantages of using 36—37
compared with ERRORMSG macro 36—37
disadvantages of using 36—37
MSMAX= operand 52
MSMIN= operand 52
MSGTYPE macro 59
MSUNITS= operand 11

network definition 3
nonreusable disk queue 54

OPDATA= operand 45
OPEN macro 6

coding considerations 52—353
operands

TCAM macro summary 151—177
operation errors 72-—73
operation technique 70—72
operator commands (see also
commands, operator) 142—143

how to enter 140141

how touse 141

responses from 144

size limitation 48

where to enter 141
operator control 13

checklist 26

macros and operands 142—143
OPTCD= operand 12, 31
option field considerations 45
OPTION macro 45
ORIGIN macro 31

reasons to use 31
OUTBUF macro 56
OUTEND macro 56
OUTHDR macro 56

Index

223

OUTMSG macro 56

Outboard Recorder/Statistical Data
Recorder (OBR/SDR) 101
file dump 101
table 102
entry types 103
field meanings 106—107
how toread 106—107

PARM= operand 90
PATH macro 59

PCB macro 12

PCl= operand 10, 47
prefix, buffer 136
PRIMARY= operand 140
PRIORITY macro 42
problem determination 39
procedural errors 72
procedural techniques 70
PUT macro 8

QBY=operand 92
QCB (queue control block)
destination 80
finding 81
finding for a terminal 86
pointers 78
QNAME= operand 39
queues
core 79
disk (see disk queues)
disk message 90
dispatcher ready 77
main-storage 10
message 93
QUEUES= operand 10, 39
queuing
by line 55
by terminal 55
finding problems in 54
typical errors 56
quick close 8

READ macro 8
READY macro 6
ready queue, dispatcher 77
recording
types 103
end-of-day 107
recording mode
intensified 101, 103
unrecoverable 103
records, device (outboard) 103
summary of 107

REDIRECT macro, reasons to use 35

RESERVE= operand 49
RETURN macro 54
reusable disk queues
advantages of 55
disadvantages of 55
RLN= operand 50

scan pointer 57
considerations 57—60
macros used by 59
setting 58

SCB, finding 83,90

SCREEN macro 59

SCT= operand 50

secondary-storage dumps 90

security, improving system 69

SEQUENCE macro 30, 59
reasons to use 30

service aids 110

service facilities 13

SETEOF macro 40, 42

SETSCAN macro 57

special elements in the dump 78

stand-alone dump
assembling 84

224 .0OS TCAM User’s Guide

creating 84
finding AVT in 85
finding cross-reference table in 86
finding current bufferin 85
finding DCBin 86
finding LCBin 86
finding line 1/0 interrupt trace table in 85
finding message error record in 90
finding QCB for a terminal in 86
finding SCB in 90
finding subtask trace table in 86
how to use 85
obtaining 84—85
reading 85
when to take 84
STAE macro 41
STARTMH macro 33, 56
STARTUP= operand 52, 111
start-up types
static buffer allocation 10
statistical data records (SDR) (see Outboard
Recorder/Statistical Data Recorder)
STOP= operand 33
STX character, when to include 62
subroutine considerations 62
subtask trace table 118
activating 118
entry contents 121
entry format 120
field meanings 120—125
finding 119
finding in a stand-alone dump 86
formatted 127
headers 121
how to dump 119
how to obtain 119
how to print 119
how touse 119
in main storage 120
when todump 119
whentouse 119
subtask trace table entry
how to read 125
summary of outboard records 107
how to read 107
when touse 107
SVC considerations 60
SYNAD= operand 41
SYNADAF macro 41
SYNADRLS macro 41
SYSABEND 75
SYSCON 140
SYSCLOSE operator command 8
SYSUDUMP 75

table
cross-reference 138
line I/O interrupt trace 111
OBR/SDR 102
subtask trace 118
table pointers 76, 180
TCAM
activating and deactivating 6
application program considerations 39
application program support 12
buffering scheme
coding aids 17
coding hints 23
control block linkages 148—150
device configurations 209—211
diagnostic aids 75
formatted ABEND dump 179
function checklists 17
gathering and interpreting data from dumps 75
invoking facilities of
macros and their operands 151
message control program considerations 44
message flow 8
message handlers 11
network definition 3
normal end-of-day closedown 145
operating and procedural considerations 70
other internal design highlights 15

—

overview 3
problem determination aids 39
queuing scheme 10
service facilities 13
starting 4
task relationships 40,150
terminal user errors 72
total main-storage requirements 22
unit-pool analysis forms 21—22
using operator commands 140
TCB pointers 78
terminal entry 87
terminal listings, how to use 140
TERMINAL macro 3—4
coding considerations 44—45
typical errors 45—46
terminal name (termname) table 79
terminal problems, finding 101—107
terminal table 79
terminal user errors 72—73
termname table 79
TERRSET macro 32
TOTE 14
TPROCESS macro 39
trace tables
formatted buffer 135

formatted line I/0 interrupt 117—118

formatted subtask 127
how to dump 110
how to print 110

printing by time 111
TRACE= operand 52
TRANS= operand 50
transparent mode 44
TTABLE macro 32
typical errors

activation 53—54

application program 43

buffers 49

datasets 51

deactivation 53—54

line control areas 45—46

message handlers 69—70

queuing 56

TERMINAL macro 45—46

user code 62

unit-pool analysis, TCAM forms for
UNIT= operand 50
UNITNAME macro 50
user code
typical errors 62
UTERM= operand 44

warm start 8
WRITE macro 8
WTO macro 38

Index 225

N

~——

.".‘........'.......‘...O............'...........'..O..'...O..‘..‘..l..'......l............l........‘.........

READER’S COMMENT FORM

0S TCAM User’s Guide

e How did you use this publication?

As a reference source D
As a classroom text O
As. .o a

e Based on your own experience, rate this publication . . .

As a reference source: e e e
Very Good Fair Poor
Good

As a text:

Very Good Fair Poor
Good

Order No. GC30-2025-0

@ Whatis your occupation? ittt ittt i i i e e

e We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

1

o Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC30-2025-0

YOUR COMMENTS, PLEASE . . .

Your answers to the questions on the back of this form, together with your comments,
help us produce better publications for your use. Each reply is carefully reviewed by the
persons responsible for writing and publishing this material. All comments and sugges-
tions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY . ..

IBM Corporation
P. O.Box 12275
Research Triangle Park
North Carolina 27709

Attention: Publications Center, Dept. EQ1

NBIVI

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

FIRST CLASS
PERMIT NO. 569

RESEARCH TRIANGLE PARK

NORTH CAROLINA

e e L

S aulm BUOlY IND) === == = = =— — =

N-G707-0SN0 "Y' Ul Palulld 8pINg s,485 NYOL SO

TN

—

GC30-2025-0

| -

0-G202-0€09D 'V'S'N Ul paiulld 8ping s,18sn NVIL SO

JISIM

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

